메뉴 건너뛰기




Volumn 11, Issue 2, 1999, Pages 521-540

An on-line agglomerative clustering method for nonstationary data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOMATED PATTERN RECOGNITION; CLUSTER ANALYSIS; COMPARATIVE STUDY; FRUIT; QUALITY CONTROL; STANDARD;

EID: 0033556908     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976699300016755     Document Type: Article
Times cited : (51)

References (16)
  • 1
    • 0014060964 scopus 로고
    • A clustering technique for summarizing multivariate data
    • Ball, G., & Hall, D. (1967). A clustering technique for summarizing multivariate data. Behavioral Science, 12, 153-155.
    • (1967) Behavioral Science , vol.12 , pp. 153-155
    • Ball, G.1    Hall, D.2
  • 2
    • 0009055376 scopus 로고
    • Complexity optimized data clustering by competitive neural networks
    • Buhmann, J., & Kuhnel, H. (1993). Complexity optimized data clustering by competitive neural networks. Neural Computation, 5, 75-88.
    • (1993) Neural Computation , vol.5 , pp. 75-88
    • Buhmann, J.1    Kuhnel, H.2
  • 3
    • 0039831483 scopus 로고
    • Adaptive resonance theory: Neural network architectures for self-organizing pattern recognition
    • R. Eckmiller, G. Hartmann, and G. Hauske (Eds.), Amsterdam: North-Holland
    • Carpenter, G. A., & Grossberg, S. (1990). Adaptive resonance theory: Neural network architectures for self-organizing pattern recognition. In R. Eckmiller, G. Hartmann, and G. Hauske (Eds.), Parallel processing in neural systems and computers (pp. 383-389). Amsterdam: North-Holland.
    • (1990) Parallel Processing in Neural Systems and Computers , pp. 383-389
    • Carpenter, G.A.1    Grossberg, S.2
  • 5
    • 0028748949 scopus 로고
    • Growing cell structures - A self-organizing network for unsupervised and supervised learning
    • Fritzke, B. (1994). Growing cell structures - A self-organizing network for unsupervised and supervised learning. Neural Networks, 7, 1441-1460.
    • (1994) Neural Networks , vol.7 , pp. 1441-1460
    • Fritzke, B.1
  • 12
    • 0025585402 scopus 로고
    • A deterministic annealing approach to clustering
    • Rose, K., Gurewitz, E., & Fox, G. (1990). A deterministic annealing approach to clustering. Patt. Rec. Letters, 22(4), 589-594.
    • (1990) Patt. Rec. Letters , vol.22 , Issue.4 , pp. 589-594
    • Rose, K.1    Gurewitz, E.2    Fox, G.3
  • 13
    • 0004320561 scopus 로고
    • Pattern recognition by an adaptive process of sample set construction
    • Sebestyen, G. S. (1962). Pattern recognition by an adaptive process of sample set construction. IRE Trans. Info. Theory, 8, S82-S91.
    • (1962) IRE Trans. Info. Theory , vol.8
    • Sebestyen, G.S.1
  • 15
    • 0028607656 scopus 로고
    • A new competitive learning approach based on an equidistortion principle for designing optimal vector quantizers
    • Ueda, N., & Nakano, R. (1994). A new competitive learning approach based on an equidistortion principle for designing optimal vector quantizers. Neural Networks, 7(8), 1211-1227.
    • (1994) Neural Networks , vol.7 , Issue.8 , pp. 1211-1227
    • Ueda, N.1    Nakano, R.2
  • 16
    • 0002449582 scopus 로고
    • Clustering data by melting
    • Wong, Y. (1993). Clustering data by melting. Neural Computation, 5, 89-104.
    • (1993) Neural Computation , vol.5 , pp. 89-104
    • Wong, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.