메뉴 건너뛰기




Volumn 79, Issue 3, 2010, Pages 335-354

Learning to detect incidents from noisily labeled data

Author keywords

Dynamic Bayesian networks; Incident detection; Road network; SVM

Indexed keywords

DATA LABELS; DETECTION MODELS; DETECTION PERFORMANCE; DYNAMIC BAYESIAN NETWORK; FALSE POSITIVE; INCIDENT DETECTION; LABELED DATA; MACHINE-LEARNING; MANUAL TUNING; MODEL-BASED; ROAD NETWORK; SVM MODEL; TEMPORAL NOISE; TRAFFIC FLOW; TRAFFIC INCIDENT DETECTOR; TRAFFIC INCIDENTS; TRAFFIC SENSORS; TRAINING DATA;

EID: 77953027709     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-009-5141-7     Document Type: Article
Times cited : (21)

References (27)
  • 1
    • 0029753401 scopus 로고    scopus 로고
    • Single-station incident detection algorithm (SSID) for sparsely instrumented freeway sites
    • Antoniades, C. N., & Stephanedes, Y. J. (1996). Single-station incident detection algorithm (SSID) for sparsely instrumented freeway sites. In Transportation engineering.
    • (1996) Transportation Engineering
    • Antoniades, C.N.1    Stephanedes, Y.J.2
  • 2
    • 33749254183 scopus 로고    scopus 로고
    • On the path to an ideal ROC curve: Considering cost asymmetry in learning classifiers
    • R. G. Cowell & Z. Ghahramani (Eds.)
    • Bach, F., Heckerman, D., & Horvitz, E. (2005). On the path to an ideal ROC curve: considering cost asymmetry in learning classifiers. In R. G. Cowell & Z. Ghahramani (Eds.), Proceedings of AISTATS05 (pp. 9-16).
    • (2005) Proceedings of AISTATS05 , pp. 9-16
    • Bach, F.1    Heckerman, D.2    Horvitz, E.3
  • 4
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • 0165.22305 10.1109/TIT.1968.1054142 2443718
    • C. J. K. Chow C. N. Liu 1968 Approximating discrete probability distributions with dependence trees IEEE Transactions on Information Theory 14 3 462 467 0165.22305 10.1109/TIT.1968.1054142 2443718
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.J.K.1    Liu, C.N.2
  • 6
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • 10.1111/j.1467-8640.1989.tb00324.x
    • T. Dean K. Kanazawa 1989 A model for reasoning about persistence and causation Computational Intelligence 5 142 150 10.1111/j.1467-8640.1989.tb00324. x
    • (1989) Computational Intelligence , vol.5 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 10
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • 0892.68077 10.1023/A:1007465528199
    • N. Friedman D. Geiger M. Goldszmidt 1997 Bayesian network classifiers Machine Learning 29 131 163 0892.68077 10.1023/A:1007465528199
    • (1997) Machine Learning , vol.29 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 15
  • 18
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • Provost, F. J., & Fawcett, T. (1997). Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. In Knowledge discovery and data mining (pp. 43-48).
    • (1997) Knowledge Discovery and Data Mining , pp. 43-48
    • Provost, F.J.1    Fawcett, T.2
  • 21
    • 33645143507 scopus 로고    scopus 로고
    • A. Schadschneider T. Pöschel R. Kühne M. Schreckenberg D. E. Wolf (eds). Springer Berlin
    • Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., & Wolf, D. E. (Eds.) (2005). Traffic and granular flow. Berlin: Springer.
    • (2005) Traffic and Granular Flow
  • 24
    • 38049126059 scopus 로고    scopus 로고
    • Learning to detect adverse traffic events from noisily labeled data
    • Proceedings of principles and practice of knowledge discovery in databases PKDD 2007 Berlin: Springer
    • Šingliar, T., & Hauskrecht, M. (2007). Learning to detect adverse traffic events from noisily labeled data. In LNCS: Vol. 4702. Proceedings of principles and practice of knowledge discovery in databases PKDD 2007 (pp. 236-247). Berlin: Springer.
    • (2007) LNCS , vol.4702 , pp. 236-247
    • Šingliar, T.1    Hauskrecht, M.2
  • 26
    • 0034008810 scopus 로고    scopus 로고
    • Analysis and synthesis of intonation using the Tilt model
    • DOI 10.1121/1.428453
    • P. A. Taylor 2000 Analysis and synthesis of intonation using the Tilt model Journal of the Acoustical Society of America 107 3 1697 1714 10.1121/1.428453 (Pubitemid 30141710)
    • (2000) Journal of the Acoustical Society of America , vol.107 , Issue.3 , pp. 1697-1714
    • Taylor, P.1
  • 27
    • 33746343983 scopus 로고    scopus 로고
    • Towards universal freeway incident detection algorithms
    • DOI 10.1016/j.trc.2006.05.004, PII S0968090X06000337
    • K. Zhang M. A. P. Taylor 2006 Towards universal freeway incident detection algorithms Transportation Research. Part C, Emerging Technologies 14 2 68 80 10.1016/j.trc.2006.05.004 (Pubitemid 44111735)
    • (2006) Transportation Research Part C: Emerging Technologies , vol.14 , Issue.2 , pp. 68-80
    • Zhang, K.1    Taylor, M.A.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.