메뉴 건너뛰기




Volumn 14, Issue 2, 2006, Pages 68-80

Towards universal freeway incident detection algorithms

Author keywords

Advanced traffic management system; Algorithm transferability; Automated incident detection; Bayesian networks

Indexed keywords

ALGORITHMS; DATA PROCESSING; MANAGEMENT INFORMATION SYSTEMS; NEURAL NETWORKS; TRAFFIC CONTROL;

EID: 33746343983     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2006.05.004     Document Type: Article
Times cited : (32)

References (14)
  • 1
    • 0033340740 scopus 로고    scopus 로고
    • Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network
    • Abdulhai B., and Ritchie S.G. Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network. Transportation Research 7C (1999) 261-280
    • (1999) Transportation Research , vol.7 C , pp. 261-280
    • Abdulhai, B.1    Ritchie, S.G.2
  • 3
    • 0029416188 scopus 로고
    • Automated detection of lane blocking freeway incidents using artificial neural networks
    • Cheu R.L., and Ritchie S.G. Automated detection of lane blocking freeway incidents using artificial neural networks. Transportation Research 3C (1995) 371-388
    • (1995) Transportation Research , vol.3 C , pp. 371-388
    • Cheu, R.L.1    Ritchie, S.G.2
  • 4
    • 0031284301 scopus 로고    scopus 로고
    • Development and evaluation of neural network freeway incident detection models using field data
    • Dia H., and Rose G. Development and evaluation of neural network freeway incident detection models using field data. Transportation Research 5C (1997) 313-331
    • (1997) Transportation Research , vol.5 C , pp. 313-331
    • Dia, H.1    Rose, G.2
  • 5
    • 0002436698 scopus 로고
    • Distinguishing between incident congestion and recurrent congestion: a proposed logic
    • Gall A.I., and Hall F.L. Distinguishing between incident congestion and recurrent congestion: a proposed logic. Transportation Research Record 1232 (1990) 1-8
    • (1990) Transportation Research Record , vol.1232 , pp. 1-8
    • Gall, A.I.1    Hall, F.L.2
  • 6
    • 0027841796 scopus 로고
    • On-line testing of the McMaster incident detection algorithm under recurrent congestion
    • Hall F.L., Shi Y., and Atala G. On-line testing of the McMaster incident detection algorithm under recurrent congestion. Transportation Research Record 1394 (1993) 1-7
    • (1993) Transportation Research Record , vol.1394 , pp. 1-7
    • Hall, F.L.1    Shi, Y.2    Atala, G.3
  • 7
    • 85029851705 scopus 로고    scopus 로고
    • Hugin 2003. www.hugin.com.
  • 9
    • 0018115446 scopus 로고
    • Freeway incident-detection algorithms based on decision tree with states
    • Payne H.J., and Tignor S.C. Freeway incident-detection algorithms based on decision tree with states. Transportation Research Record 682 (1978) 30-37
    • (1978) Transportation Research Record , vol.682 , pp. 30-37
    • Payne, H.J.1    Tignor, S.C.2
  • 11
    • 0024631226 scopus 로고
    • Catastrophe theory and pattern in 30 second freeway traffic data - implication for incident detection
    • Persaud B., and Hall F.L. Catastrophe theory and pattern in 30 second freeway traffic data - implication for incident detection. Transportation Research 23A (1989) 103-113
    • (1989) Transportation Research , vol.23 A , pp. 103-113
    • Persaud, B.1    Hall, F.L.2
  • 13
    • 85029844119 scopus 로고    scopus 로고
    • Zhang, K., Taylor, M.A.P., 2002. Automated incident detection - Bayesian networks approach. In: Proceedings of the 24th Conference of Australian Institutes of Transport Research, Sydney.
  • 14
    • 85029849114 scopus 로고    scopus 로고
    • Zhang, K., Taylor, M.A.P., 2004. Incident detection on freeways: a Bayesian network approach. In: Proceedings of the 27th Australasian Transport Research Forum, Adelaide.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.