메뉴 건너뛰기




Volumn 19, Issue 3, 2010, Pages 471-475

Advanced machine learning techniques for microarray spot quality classification

Author keywords

Feature selection; Microarray spot quality; Neural networks; Random subspace ensembles; Support vector machine

Indexed keywords


EID: 77952887375     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-010-0342-3     Document Type: Article
Times cited : (8)

References (20)
  • 1
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with complementary DNA microarray
    • Schena M, Shalon D, Davis R, Brown P (1995) Quantitative monitoring of gene expression patterns with complementary DNA microarray. Science 270: 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.3    Brown, P.4
  • 3
    • 33846069758 scopus 로고    scopus 로고
    • Ensemblator: An ensemble of classifiers for reliable classification of Biological Data
    • Nanni L, Lumini A (2007) Ensemblator: an ensemble of classifiers for reliable classification of Biological Data. Pattern Recogn Lett 28(5): 622-630.
    • (2007) Pattern Recogn Lett , vol.28 , Issue.5 , pp. 622-630
    • Nanni, L.1    Lumini, A.2
  • 5
    • 0035979269 scopus 로고    scopus 로고
    • Image metrics in the statistical analysis of DNA microarray data
    • Brown C, Goodwin P, Sorger P (2001) Image metrics in the statistical analysis of DNA microarray data. Proc Natl Acad Sci USA 98: 8944-8949.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8944-8949
    • Brown, C.1    Goodwin, P.2    Sorger, P.3
  • 6
    • 0035433128 scopus 로고    scopus 로고
    • Quantitative quality control in microarray image processing and data acquisition
    • Wang X, Ghosh S, Guo S (2001) Quantitative quality control in microarray image processing and data acquisition. Nucleic Acids Res 29: E75.
    • (2001) Nucleic Acids Res , vol.29
    • Wang, X.1    Ghosh, S.2    Guo, S.3
  • 7
    • 11244333072 scopus 로고    scopus 로고
    • Statistical process control for large scale microarray experiments
    • Model F, König T, Piepenbrock C, Adorján P (2002) Statistical process control for large scale microarray experiments. Bioinformatics 1: 1-9.
    • (2002) Bioinformatics , vol.1 , pp. 1-9
    • Model, F.1    König, T.2    Piepenbrock, C.3    Adorján, P.4
  • 8
    • 0036740360 scopus 로고    scopus 로고
    • Ratio statistics of gene expression levels and applications to microarray data analysis
    • Chen Y, Kamat V, Dougherty E, Bittner M, Meltzer P, Trent J (2002) Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics 18: 1207-1215.
    • (2002) Bioinformatics , vol.18 , pp. 1207-1215
    • Chen, Y.1    Kamat, V.2    Dougherty, E.3    Bittner, M.4    Meltzer, P.5    Trent, J.6
  • 10
    • 27844612531 scopus 로고    scopus 로고
    • A supervised data-driven approach for microarray spot quality classification
    • Bicego M, Del Rosario M, Murino V (2005) A supervised data-driven approach for microarray spot quality classification. Pattern Anal Applic 8: 181-187.
    • (2005) Pattern Anal Applic , vol.8 , pp. 181-187
    • Bicego, M.1    Del Rosario, M.2    Murino, V.3
  • 11
    • 29144474640 scopus 로고    scopus 로고
    • FuzzyBagging: A novel ensemble of classifiers
    • Nanni L, Lumini A (2006) FuzzyBagging: a novel ensemble of classifiers. Pattern Recogn 39(3): 488-490.
    • (2006) Pattern Recogn , vol.39 , Issue.3 , pp. 488-490
    • Nanni, L.1    Lumini, A.2
  • 12
    • 32844457643 scopus 로고    scopus 로고
    • Cluster-based pattern discrimination: A novel technique for feature selection
    • Nanni L (2006) Cluster-based pattern discrimination: a novel technique for feature selection. Pattern Recogn Lett 27(6): 682-687.
    • (2006) Pattern Recogn Lett , vol.27 , Issue.6 , pp. 682-687
    • Nanni, L.1
  • 13
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8): 832-844.
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 14
    • 24144473856 scopus 로고    scopus 로고
    • Ensemble of Parzen Window Classifiers for on-line signature verification
    • Nanni L, Lumini A (2005) Ensemble of Parzen Window Classifiers for on-line signature verification. Neurocomputing 68: 217-224.
    • (2005) Neurocomputing , vol.68 , pp. 217-224
    • Nanni, L.1    Lumini, A.2
  • 16
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11): 1119-1125.
    • (1994) Pattern Recogn Lett , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 18
    • 34247640819 scopus 로고    scopus 로고
    • Introduction to neonatal facial pain detection using common and advanced face classification techniques
    • Springer Berlin
    • Brahnam S, Nanni L, Randall S (2007) Introduction to neonatal facial pain detection using common and advanced face classification techniques. In: Advanced computational intelligence paradigms in healthcare, vol 48, Springer Berlin, pp 225-253.
    • (2007) Advanced Computational Intelligence Paradigms in Healthcare , vol.48 , pp. 225-253
    • Brahnam, S.1    Nanni, L.2    Randall, S.3
  • 20
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51: 181-207.
    • (2003) Mach Learn , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.