-
1
-
-
77149137313
-
-
references therein
-
Bhosale, R., Míšek, J., Sakai, N., and Matile, S. Chem. Soc. Rev. 2010, 39, 138 and references therein
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 138
-
-
Bhosale, R.1
Míšek, J.2
Sakai, N.3
Matile, S.4
-
2
-
-
37549043530
-
-
Thompson, B. C. and Fréchet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 58
-
-
Thompson, B.C.1
Fréchet, J.M.J.2
-
3
-
-
34547382263
-
-
Blom, P. W. M., Mihailetchi, V. D., Koster, L. J. A., and Markov, D. E. Adv. Mater. 2007, 19, 1551
-
(2007)
Adv. Mater.
, vol.19
, pp. 1551
-
-
Blom, P.W.M.1
Mihailetchi, V.D.2
Koster, L.J.A.3
Markov, D.E.4
-
4
-
-
35948941586
-
-
Martín, N., Sánchez, L., Angeles Herranz, M., Illescas, B., and Guldi, D. M. Acc. Chem. Res. 2007, 40, 1015
-
(2007)
Acc. Chem. Res.
, vol.40
, pp. 1015
-
-
Martín, N.1
Sánchez, L.2
Ángeles Herranz, M.3
Illescas, B.4
Guldi, D.M.5
-
5
-
-
4344627317
-
-
Würthner, F., Chen, Z., Hoeben, F. J. M., Osswald, P., You, C.-C., Jonkheijm, P., Herrikhuyzen, J., Schenning, A. P. H. J., van der Schoot, P. P. A. M., Meijer, E. W., Beckers, E. H. A., Meskers, S. C. J., and Janssen, R. A. J. J. Am. Chem. Soc. 2004, 126, 10611
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 10611
-
-
Würthner, F.1
Chen, Z.2
Hoeben, F.J.M.3
Osswald, P.4
You, C.-C.5
Jonkheijm, P.6
Herrikhuyzen, J.7
Schenning, A.P.H.J.8
Van Der Schoot, P.P.A.M.9
Meijer, E.W.10
Beckers, E.H.A.11
Meskers, S.C.J.12
Janssen, R.A.J.13
-
6
-
-
75849165147
-
-
Yamamoto, Y., Zhang, G., Jin, W., Fukushima, T., Ishii, N., Saeki, A., Seki, S., Tagawa, S., Minari, T., Tsukagoshi, K., and Aida, T. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21051
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21051
-
-
Yamamoto, Y.1
Zhang, G.2
Jin, W.3
Fukushima, T.4
Ishii, N.5
Saeki, A.6
Seki, S.7
Tagawa, S.8
Minari, T.9
Tsukagoshi, K.10
Aida, T.11
-
7
-
-
67749106303
-
-
Kira, A., Umeyama, T., Matano, Y., Yoshida, K., Isoda, S., Park, J. K., Kim, D., and Imahori, H. J. Am. Chem. Soc. 2009, 131, 3198
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3198
-
-
Kira, A.1
Umeyama, T.2
Matano, Y.3
Yoshida, K.4
Isoda, S.5
Park, J.K.6
Kim, D.7
Imahori, H.8
-
9
-
-
25844456532
-
-
Snaith, H. J., Whiting, G. L., Sun, B., Greenham, N. C., Huck, W. T. S., and Friend, R. H. Nano Lett. 2005, 5, 1653
-
(2005)
Nano Lett.
, vol.5
, pp. 1653
-
-
Snaith, H.J.1
Whiting, G.L.2
Sun, B.3
Greenham, N.C.4
Huck, W.T.S.5
Friend, R.H.6
-
10
-
-
11144347693
-
-
Yang, F., Shtein, M., and Forrest, S. Nat. Mater. 2005, 4, 37
-
(2005)
Nat. Mater.
, vol.4
, pp. 37
-
-
Yang, F.1
Shtein, M.2
Forrest, S.3
-
11
-
-
25444476993
-
-
Morisue, M., Yamatsu, S., Haruta, N., and Kobuke, Y. Chem. - Eur. J. 2005, 11, 5563
-
(2005)
Chem. - Eur. J.
, vol.11
, pp. 5563
-
-
Morisue, M.1
Yamatsu, S.2
Haruta, N.3
Kobuke, Y.4
-
12
-
-
70349913581
-
-
Bhosale, R., Perez-Velasco, A., Ravikumar, V., Kishore, R. S. K., Kel, O., Gomez-Casado, A., Jonkheijm, P., Huskens, J., Maroni, P., Borkovec, M., Sawada, T., Vauthey, E., Sakai, N., and Matile, S. Angew. Chem., Int. Ed. 2009, 48, 6461
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 6461
-
-
Bhosale, R.1
Perez-Velasco, A.2
Ravikumar, V.3
Kishore, R.S.K.4
Kel, O.5
Gomez-Casado, A.6
Jonkheijm, P.7
Huskens, J.8
Maroni, P.9
Borkovec, M.10
Sawada, T.11
Vauthey, E.12
Sakai, N.13
Matile, S.14
-
13
-
-
68249149028
-
-
Kishore, R. S. K., Kel, O., Banerji, N., Emery, D., Bollot, G., Mareda, J., Gomez-Casado, A., Jonkheijm, P., Huskens, J., Maroni, P., Borkovec, M., Vauthey, E., Sakai, N., and Matile, S. J. Am. Chem. Soc. 2009, 131, 11106
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 11106
-
-
Kishore, R.S.K.1
Kel, O.2
Banerji, N.3
Emery, D.4
Bollot, G.5
Mareda, J.6
Gomez-Casado, A.7
Jonkheijm, P.8
Huskens, J.9
Maroni, P.10
Borkovec, M.11
Vauthey, E.12
Sakai, N.13
Matile, S.14
-
14
-
-
77952565766
-
-
See the Supporting Information
-
See the Supporting Information.
-
-
-
-
15
-
-
77952570106
-
-
The higher photocurrents and greater mass deposited with R zippers than Y zippers can be explained by incomplete layer formation with POP-Y (or, less likely, overzipping with R). The slower assembly kinetics according to photocurrent generation with Y zippers (2 days) in comparison with R zippers (<1 day) and LBL controls (12, 13) as well as the smooth surfaces in all zippers (12, 13) imply the occurrence of extensive self-repair of incomplete layers with continuing assembly. The number of permanent errors in zipper architectures should differ for different monomer structures. Vigorous functional controls (capping, LBL), smooth surfaces, and high (in comparison with relevant controls) fill factors, photocurrents, critical thickness, etc., imply that the overall error frequency was low
-
The higher photocurrents and greater mass deposited with R zippers than Y zippers can be explained by incomplete layer formation with POP-Y (or, less likely, overzipping with R). The slower assembly kinetics according to photocurrent generation with Y zippers (2 days) in comparison with R zippers (<1 day) and LBL controls (12, 13) as well as the smooth surfaces in all zippers (12, 13) imply the occurrence of extensive self-repair of incomplete layers with continuing assembly. The number of permanent errors in zipper architectures should differ for different monomer structures. Vigorous functional controls (capping, LBL), smooth surfaces, and high (in comparison with relevant controls) fill factors, photocurrents, critical thickness, etc., imply that the overall error frequency was low.
-
-
-
-
16
-
-
77952573777
-
-
Absolute photocurrent densities were not maximized, as they were not the main concern of this study. Elimination of surface plasmon resonance (SPR) quenching (using surfaces other than gold) (12, 13) and total oxygen exclusion (glovebox level), among other things, would be expected to boost the photocurrent. The reproducibility in experiments with identical materials was excellent (Figure 4), and the batch-to-batch reproducibility was reasonable
-
Absolute photocurrent densities were not maximized, as they were not the main concern of this study. Elimination of surface plasmon resonance (SPR) quenching (using surfaces other than gold) (12, 13) and total oxygen exclusion (glovebox level), among other things, would be expected to boost the photocurrent. The reproducibility in experiments with identical materials was excellent (Figure 4), and the batch-to-batch reproducibility was reasonable.
-
-
-
-
17
-
-
77952558081
-
-
The film thickness could be estimated assuming ∼2 nm per layer, which is in accordance with the proposed suprastructure (Figure 1) and preliminary ellipsometry/SPR studies
-
The film thickness could be estimated assuming ∼2 nm per layer, which is in accordance with the proposed suprastructure (Figure 1) and preliminary ellipsometry/SPR studies.
-
-
-
-
18
-
-
77952578209
-
-
- forms in femtoseconds. (12)
-
- forms in femtoseconds. (12)
-
-
-
|