-
1
-
-
0022188126
-
Geometrical relation of set systems and probabilistic communication complexity
-
N. Alon, P. Frankl, V. Rodel, Geometrical relation of set systems and probabilistic communication complexity, Proc. Symp. on the Theory of Computing, 1985, pp. 277-280.
-
(1985)
Proc. Symp. on the Theory of Computing
, pp. 277-280
-
-
Alon, N.1
Frankl, P.2
Rodel, V.3
-
2
-
-
0030675155
-
A composition theorem for learning algorithms with applications to geometric concept classes
-
S. Ben-David, N. Bshouty, E. Kushilevitz, A composition theorem for learning algorithms with applications to geometric concept classes, ECCC Technical Report TR96-059 (1996), and Proc. 29th annual ACM symp. on theory of computing, (STOC'97), pp. 324-333.
-
(1996)
ECCC Technical Report TR96-059
-
-
Ben-David, S.1
Bshouty, N.2
Kushilevitz, E.3
-
3
-
-
0030675155
-
-
S. Ben-David, N. Bshouty, E. Kushilevitz, A composition theorem for learning algorithms with applications to geometric concept classes, ECCC Technical Report TR96-059 (1996), and Proc. 29th annual ACM symp. on theory of computing, (STOC'97), pp. 324-333.
-
Proc. 29th Annual ACM Symp. on Theory of Computing, (STOC'97)
, pp. 324-333
-
-
-
5
-
-
0024750852
-
Learnability and the Vapnik-Chervonenkis dimension
-
A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth, Learnability and the Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach. 36(4), (1989) 929-965.
-
(1989)
J. Assoc. Comput. Mach.
, vol.36
, Issue.4
, pp. 929-965
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.4
-
7
-
-
0346776622
-
A Course on Empirical Precesses
-
Springer, New York
-
R.M. Dudley, A Course on Empirical Precesses, Lecture Notes in Mahematics, vol. 1997, Springer, New York, 1984.
-
(1984)
Lecture Notes in Mahematics
, vol.1997
-
-
Dudley, R.M.1
-
8
-
-
0040893251
-
On space bounded learning and the Vapnik-Chervonenkis dimension
-
Ph.D. thesis, International Computer Science Institute
-
S. Floyd, On space bounded learning and the Vapnik-Chervonenkis dimension, Ph.D. thesis, International Computer Science Institute, Technical Report, TR-89-061.
-
Technical Report, TR-89-061
-
-
Floyd, S.1
-
9
-
-
0029521676
-
Sample compression, learnability, and the Vapnik-Chervonenkis dimension
-
S. Floyd, M. Warmuth, Sample compression, learnability, and the Vapnik-Chervonenkis dimension, Mach. Learning, 21, (1995) 1-36.
-
(1995)
Mach. Learning
, vol.21
, pp. 1-36
-
-
Floyd, S.1
Warmuth, M.2
-
10
-
-
0029256399
-
Bounding the Vapnik-Chervonenkis dimension of concept classes parametrized by real numbers
-
P.W. Goldberg, M. Jerrum, Bounding the Vapnik-Chervonenkis dimension of concept classes parametrized by real numbers, Mach. Learning, 18 (1995) 131-148.
-
(1995)
Mach. Learning
, vol.18
, pp. 131-148
-
-
Goldberg, P.W.1
Jerrum, M.2
-
11
-
-
84963049054
-
Vapnik-Cervonenkis classes of definable sets
-
[101 M.C. Laskowski, Vapnik-Cervonenkis classes of definable sets, J. London Math. Soc. 45(2), (1992) 377-384.
-
(1992)
J. London Math. Soc.
, vol.45
, Issue.2
, pp. 377-384
-
-
Laskowski, M.C.1
-
14
-
-
0000378526
-
On learning sets and function
-
B.K. Natarajan, On learning sets and function, Mach. Learning 4 (1989) 67-97.
-
(1989)
Mach. Learning
, vol.4
, pp. 67-97
-
-
Natarajan, B.K.1
-
15
-
-
0025623922
-
Prediction preserving reducibility
-
L. Pitt, M. Warmuth, Prediction preserving reducibility, J. Comput. System Sci. 41 (1990) 430-467.
-
(1990)
J. Comput. System Sci.
, vol.41
, pp. 430-467
-
-
Pitt, L.1
Warmuth, M.2
-
16
-
-
0001703864
-
On the density of families of sets
-
N. Sauer, On the density of families of sets, J. Combin. Theory. Ser. A 13 (1972) 145-147.
-
(1972)
J. Combin. Theory. Ser. A
, vol.13
, pp. 145-147
-
-
Sauer, N.1
|