메뉴 건너뛰기




Volumn 8, Issue 2, 1996, Pages 451-460

The Interchangeability of Learning Rate and Gain in Backpropagation Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; KINETICS;

EID: 0030584163     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/neco.1996.8.2.451     Document Type: Article
Times cited : (58)

References (23)
  • 6
    • 0028425156 scopus 로고
    • An iterative method for training multilayer networks with threshold functions
    • Corwin, E., Logar, A., and Oldham, W. 1994. An iterative method for training multilayer networks with threshold functions. IEEE Trans. Neural Networks 5(3), 507-508.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.3 , pp. 507-508
    • Corwin, E.1    Logar, A.2    Oldham, W.3
  • 8
    • 0028464007 scopus 로고
    • Neural network classification and formalization
    • J. Fulcher, ed., North-Holland/Elsevier Science Publishers, Amsterdam, The Netherlands
    • Fiesler, E. 1994. Neural network classification and formalization. In Computer Standards & Interfaces, special issue on Neural Network Standardization, J. Fulcher, ed., Vol. 16, No. 3, pp. 231-239. North-Holland/Elsevier Science Publishers, Amsterdam, The Netherlands.
    • (1994) Computer Standards & Interfaces, Special Issue on Neural Network Standardization , vol.16 , Issue.3 , pp. 231-239
    • Fiesler, E.1
  • 9
    • 85033736823 scopus 로고    scopus 로고
    • A universal weight discretization method for multi-layer neural networks
    • conditionally accepted for publication
    • Fiesler, E., Choudry, A., and Caulfield, H. J. 1996. A universal weight discretization method for multi-layer neural networks. IEEE Transactions on Systems, Man, and Cybernetics (IEEE-SMC) (conditionally accepted for publication). See also Fiesler, E., Choudry, A., and Caulfield, H. J. 1990. A weight discretization paradigm for optical neural networks. Proc. Int. Cong. Optical Sci. Eng. SPIE 1281, 164-173.
    • (1996) IEEE Transactions on Systems, Man, and Cybernetics (IEEE-SMC)
    • Fiesler, E.1    Choudry, A.2    Caulfield, H.J.3
  • 10
    • 0025591476 scopus 로고
    • A weight discretization paradigm for optical neural networks
    • Fiesler, E., Choudry, A., and Caulfield, H. J. 1996. A universal weight discretization method for multi-layer neural networks. IEEE Transactions on Systems, Man, and Cybernetics (IEEE-SMC) (conditionally accepted for publication). See also Fiesler, E., Choudry, A., and Caulfield, H. J. 1990. A weight discretization paradigm for optical neural networks. Proc. Int. Cong. Optical Sci. Eng. SPIE 1281, 164-173.
    • (1990) Proc. Int. Cong. Optical Sci. Eng. SPIE , vol.1281 , pp. 164-173
    • Fiesler, E.1    Choudry, A.2    Caulfield, H.J.3
  • 11
    • 0041848003 scopus 로고
    • Analysis of neural networks with redundancy
    • Izui, Y., and Pentland, A. 1990. Analysis of neural networks with redundancy. Neural Comp. 2, 226-238.
    • (1990) Neural Comp. , vol.2 , pp. 226-238
    • Izui, Y.1    Pentland, A.2
  • 12
    • 38149143969 scopus 로고
    • Equivalence relation between the backpropagation learning process of an FNN and that of an FNNG
    • Jia, Q., Hagiwara, K., Toda, N., and Usui, S. 1994. Equivalence relation between the backpropagation learning process of an FNN and that of an FNNG. Neural Networks 7(2), 411.
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 411
    • Jia, Q.1    Hagiwara, K.2    Toda, N.3    Usui, S.4
  • 13
    • 0025889440 scopus 로고
    • Benefits of gain: Speeded learning and minimal hidden layers in backpropagation networks
    • Kruschke, J. K., and Movellan, J. R. 1991. Benefits of gain: Speeded learning and minimal hidden layers in backpropagation networks. IEEE Trans. Syst. Man Cybern. 21(1), 273-280.
    • (1991) IEEE Trans. Syst. Man Cybern. , vol.21 , Issue.1 , pp. 273-280
    • Kruschke, J.K.1    Movellan, J.R.2
  • 14
    • 33749787394 scopus 로고
    • Threshold non-linearity effects on weight-decay tolerance in analog neural networks
    • Mundie, D. B., and Massengill, L. W. 1992. Threshold non-linearity effects on weight-decay tolerance in analog neural networks. Proc. Int. Joint Conf. Neural Networks (IJCNN92) 2, 583-587.
    • (1992) Proc. Int. Joint Conf. Neural Networks (IJCNN92) , vol.2 , pp. 583-587
    • Mundie, D.B.1    Massengill, L.W.2
  • 17
    • 0029350979 scopus 로고
    • Adaptive multilayer optical neural network with optical thresholding
    • P. Rastogi, ed.
    • Saxena, I., and Fiesler, E. 1995. Adaptive multilayer optical neural network with optical thresholding. In Optical Engineering, special on Optics in Switzerland, P. Rastogi, ed., Vol. 34(8), pp. 2435-2440.
    • (1995) Optical Engineering, Special on Optics in Switzerland , vol.34 , Issue.8 , pp. 2435-2440
    • Saxena, I.1    Fiesler, E.2
  • 18
    • 0027313792 scopus 로고
    • Speed up learning and network optimization with extended backpropagation
    • Sperduti, A., and Starita, A. 1993. Speed up learning and network optimization with extended backpropagation. Neural Networks 6, 365-383.
    • (1993) Neural Networks , vol.6 , pp. 365-383
    • Sperduti, A.1    Starita, A.2
  • 19
    • 85033733109 scopus 로고    scopus 로고
    • Weight initialization for high order and multilayer perceptrons
    • conditionally accepted for publication
    • Thimm, G., and Fiesler, E. 1996. Weight initialization for high order and multilayer perceptrons. IEEE Trans. Neural Networks. (conditionally accepted for publication). See also Thimm, G., and Fiesler, E. 1994. Weight initialization for high order and multilayer perceptrons. In Proceedings of the '94 SIPAR-Workshop on Parallel and Distributed Computing, M. Aguilar, ed., pp. 91-94. Institute of Informatics, University Pérolles, Chemin du Musée 3, Fribourg, Switzerland. SI Group for Parallel Systems.
    • (1996) IEEE Trans. Neural Networks
    • Thimm, G.1    Fiesler, E.2
  • 20
    • 85033739945 scopus 로고
    • Weight initialization for high order and multilayer perceptrons
    • M. Aguilar, ed., Institute of Informatics, University Pérolles, Chemin du Musée 3, Fribourg, Switzerland. SI Group for Parallel Systems
    • Thimm, G., and Fiesler, E. 1996. Weight initialization for high order and multilayer perceptrons. IEEE Trans. Neural Networks. (conditionally accepted for publication). See also Thimm, G., and Fiesler, E. 1994. Weight initialization for high order and multilayer perceptrons. In Proceedings of the '94 SIPAR-Workshop on Parallel and Distributed Computing, M. Aguilar, ed., pp. 91-94. Institute of Informatics, University Pérolles, Chemin du Musée 3, Fribourg, Switzerland. SI Group for Parallel Systems.
    • (1994) Proceedings of the '94 SIPAR-Workshop on Parallel and Distributed Computing , pp. 91-94
    • Thimm, G.1    Fiesler, E.2
  • 21
    • 0026955395 scopus 로고
    • Avoiding false local minima by proper initialization of connections
    • Wessels, L. F. A., and Barnard, E. 1992. Avoiding false local minima by proper initialization of connections. IEEE Trans. Neural Networks 3, 899-905.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 899-905
    • Wessels, L.F.A.1    Barnard, E.2
  • 22
    • 0028739199 scopus 로고
    • Training hard-limiting neurons using backpropagation algorithm by updating steepness factors
    • Yu, X., Loh, N., and Miller, W. 1994. Training hard-limiting neurons using backpropagation algorithm by updating steepness factors. Proc. IEEE Int. Conf. Neural Networks (ICNN94) 1, 526-530.
    • (1994) Proc. IEEE Int. Conf. Neural Networks (ICNN94) , vol.1 , pp. 526-530
    • Yu, X.1    Loh, N.2    Miller, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.