메뉴 건너뛰기




Volumn 31, Issue 3, 2010, Pages 689-693

KPCA and LSSVM model-based slag basicity prediction for silicomanganese smelting process

Author keywords

Kernel principal component analysis(KPCA); Least square support vector machine(LSVM); Silicomanganese; Slag basicity

Indexed keywords

DE-NOISE; INPUT DATAS; KERNEL PRINCIPAL COMPONENT ANALYSIS; LEAST SQUARE SUPPORT VECTOR MACHINES; MODEL-BASED; ON-LINE MEASUREMENT; PREDICTING METHOD; PREDICTION MODEL; PRINCIPAL COMPONENTS; SILICOMANGANESE; SIMULATION RESULT; SLAG BASICITY; SMELTING PROCESS; TRACKING PERFORMANCE;

EID: 77952130972     PISSN: 02543087     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (15)
  • 1
    • 84855258930 scopus 로고    scopus 로고
    • Study on improving Mn and Si recovery for ferromanganese-silicon smelting and its practice
    • Shi J T, Ma Y Q, Jiang R Q. Study on improving Mn and Si recovery for ferromanganese-silicon smelting and its practice [J]. Chinese Journal of FERRO-ALLOYS, 2006, 188(3):14.
    • (2006) Chinese Journal of FERRO-ALLOYS , vol.188 , Issue.3 , pp. 14
    • Shi, J.T.1    Ma, Y.Q.2    Jiang, R.Q.3
  • 3
    • 33846612754 scopus 로고    scopus 로고
    • Predicting the performance of submerged arc furnace with varied raw material combinations using artificial neural network
    • Singh V, Tathavadkar V, Rao S, et al. Predicting the performance of submerged arc furnace with varied raw material combinations using artificial neural network. [J] Journal of Materials Processing Technology, 183(2007):111-116.
    • (2007) Journal of Materials Processing Technology , vol.183 , pp. 111-116
    • Singh, V.1    Tathavadkar, V.2    Rao, S.3
  • 4
    • 25644438490 scopus 로고    scopus 로고
    • Modelling and control of chaotic processes through their bifurcation diagrams generated with the help of recurrentneural network models. Part 2: An industrial study
    • Krishnaiah J, Kumar C S, Faruqi M A. Modelling and control of chaotic processes through their bifurcation diagrams generated with the help of recurrentneural network models. Part 2: An industrial study [J]. Journal of Process Control, 16(2006):67-79.
    • (2006) Journal of Process Control , vol.16 , pp. 67-79
    • Krishnaiah, J.1    Kumar, C.S.2    Faruqi, M.A.3
  • 5
    • 67650524204 scopus 로고    scopus 로고
    • Data-driven modeling and predictive algorithm for complex blast furnace ironmaking process
    • Gao Ch H, Jian L, Chen J M, et al. Data-driven modeling and predictive algorithm for complex blast furnace ironmaking process [J]. Acta Automatica Sinica 2009, 35(6): 725-730.
    • (2009) Acta Automatica Sinica , vol.35 , Issue.6 , pp. 725-730
    • Gao, C.H.1    Jian, L.2    Chen, J.M.3
  • 8
    • 33645932935 scopus 로고    scopus 로고
    • Soft sensor modeling based on support vector machines and its applications to fermentation process
    • Chang Y Q, Wang F L, Wang X G, et al. Soft sensor modeling based on support vector machines and its applications to fermentation process [J]. Chinese Journal of Scientific Instrument, 2006, 27(3):241-244.
    • (2006) Chinese Journal of Scientific Instrument , vol.27 , Issue.3 , pp. 241-244
    • Chang, Y.Q.1    Wang, F.L.2    Wang, X.G.3
  • 10
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian mod- el selection
    • Yan W W, Shao H H, Wang X F. Soft sensing modeling based on support vector machine and Bayesian mod- el selection [J]. Computers and Chemical Engineering, 28(2004): 1489-1498.
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1489-1498
    • Yan, W.W.1    Shao, H.H.2    Wang, X.F.3
  • 11
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J A K, Vanderwalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3):293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vanderwalle, J.2
  • 12
    • 67649211819 scopus 로고    scopus 로고
    • LS_SVM prediction model based on RS reconstruction and its industrial application
    • Kong L Sh, Yang Ch H, Zhu H Q, et al. LS_SVM prediction model based on RS reconstruction and its industrial application [J]. Chinese Journal of Scientific Instrument, 2009, 30(5):921-925.
    • (2009) Chinese Journal of Scientific Instrument , vol.30 , Issue.5 , pp. 921-925
    • Kong, L.S.1    Yang, C.H.2    Zhu, H.Q.3
  • 13
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang Y W. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM [J]. Journal of Chemical Engineering Science, 64(2009):801-811.
    • (2009) Journal of Chemical Engineering Science , vol.64 , pp. 801-811
    • Zhang, Y.W.1
  • 15
    • 61749097758 scopus 로고    scopus 로고
    • Fault diagnosis of medium speed mill based on KPCA and LSSVM
    • Liu D P, Ye X R, Chen B Y, et al. Fault diagnosis of medium speed mill based on KPCA and LSSVM [J]. Chinese Journal of Power Engineering, 2009, 29(2): 155-158.
    • (2009) Chinese Journal of Power Engineering , vol.29 , Issue.2 , pp. 155-158
    • Liu, D.P.1    Ye, X.R.2    Chen, B.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.