메뉴 건너뛰기




Volumn 35, Issue 6, 2009, Pages 725-730

Data-driven modeling and predictive algorithm for complex blast furnace ironmaking process

Author keywords

Blast furnace ironmaking process; Data driven; Predictive model; Silicon content in hot metal; Time series

Indexed keywords

BLAST FURNACE IRON-MAKING; BLAST FURNACE IRONMAKING PROCESS; DATA-DRIVEN; DATA-DRIVEN MODELING; HOT METAL; MULTIVARIATE TIME SERIES; PREDICTIVE ALGORITHMS; PREDICTIVE MODEL; PREDICTIVE MODELS; PRODUCTION PROCESS; ROOT-MEAN-SQUARE ERROR OF PREDICTIONS; SAMPLE SETS; SILICON CONTENT IN HOT METAL; SILICON CONTENTS; TARGET HITTING; THERMAL STATE; UNIVARIATE TIME SERIES;

EID: 67650524204     PISSN: 02544156     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1004.2009.00725     Document Type: Article
Times cited : (50)

References (23)
  • 1
    • 67650542375 scopus 로고    scopus 로고
    • State Metallurgical Industry Bureau, Chinese Society of Metal, Center of Metallurgical Science and Technology
    • State Metallurgical Industry Bureau, Chinese Society of Metal, Center of Metallurgical Science and Technology. Guide for Development of Metallurgical Science and Technology (2000~2005), 1999
    • (1999) Guide for Development of Metallurgical Science and Technology (2000~2005)
  • 2
    • 29144460273 scopus 로고    scopus 로고
    • Two dimensional cold model study on unstable solid descending motion and control in blast furnace operation with low reducing agent rate
    • Takahashi H, Kawai H, Kobayashi M, Fukui T. Two dimensional cold model study on unstable solid descending motion and control in blast furnace operation with low reducing agent rate. The Iron and Steel Institute of Japan International, 2005, 45(10): 1386-1395
    • (2005) The Iron and Steel Institute of Japan International , vol.45 , Issue.10 , pp. 1386-1395
    • Takahashi, H.1    Kawai, H.2    Kobayashi, M.3    Fukui, T.4
  • 3
    • 27844563920 scopus 로고    scopus 로고
    • Multi-dimensional transient mathematical simulator of blast furnace process based on multi-fluid and kinetic theories
    • Nogami H, Chu M S, Yagi J. Multi-dimensional transient mathematical simulator of blast furnace process based on multi-fluid and kinetic theories. Computer and Chemical Engineering, 2005, 29(11-12): 2438-2448
    • (2005) Computer and Chemical Engineering , vol.29 , Issue.11-12 , pp. 2438-2448
    • Nogami, H.1    Chu, M.S.2    Yagi, J.3
  • 4
    • 37849189589 scopus 로고    scopus 로고
    • Numerical simulation of innovative operation of blast furnace based on multi-fluid model
    • Chu M S, Yang X F, Shen F M, Yagi J, Nogami H. Numerical simulation of innovative operation of blast furnace based on multi-fluid model. Journal of Iron and Steel Research, 2006, 13(6): 8-15
    • (2006) Journal of Iron and Steel Research , vol.13 , Issue.6 , pp. 8-15
    • Chu, M.S.1    Yang, X.F.2    Shen, F.M.3    Yagi, J.4    Nogami, H.5
  • 5
    • 0028526798 scopus 로고
    • Short-term prediction of silicon content in pig iron
    • Saxén H. Short-term prediction of silicon content in pig iron. Canadian Metallurgical Quarterly, 1994, 33(4): 319-326
    • (1994) Canadian Metallurgical Quarterly , vol.33 , Issue.4 , pp. 319-326
    • Saxén, H.1
  • 6
    • 0034551618 scopus 로고    scopus 로고
    • Neural networks for the identification and control of blast furnace hot metal quality
    • Radhakrishnan V R, Mohamed A R. Neural networks for the identification and control of blast furnace hot metal quality. Journal of Process Control, 2000, 10(6): 509-524
    • (2000) Journal of Process Control , vol.10 , Issue.6 , pp. 509-524
    • Radhakrishnan, V.R.1    Mohamed, A.R.2
  • 7
    • 0035253981 scopus 로고    scopus 로고
    • A predictive system for blast furnaces by integrating a neural network with qualitative analysis
    • Chen J. A predictive system for blast furnaces by integrating a neural network with qualitative analysis. Engineering Applications of Artificial Intelligence, 2001, 14(1): 77-85
    • (2001) Engineering Applications of Artificial Intelligence , vol.14 , Issue.1 , pp. 77-85
    • Chen, J.1
  • 8
    • 39149117356 scopus 로고    scopus 로고
    • Nonlinear prediction of the hot metal silicon content in the blast furnace
    • Saxén H, Pettersson F. Nonlinear prediction of the hot metal silicon content in the blast furnace. ISIJ International, 2007, 47(12): 1732-1737
    • (2007) ISIJ International , vol.47 , Issue.12 , pp. 1732-1737
    • Saxén, H.1    Pettersson, F.2
  • 9
    • 35348980189 scopus 로고    scopus 로고
    • Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools
    • Martín R D, Obeso F, Mochón J, Barea R, Jiménez J. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools. Ironmaking and Steelmaking, 2007, 34(3): 241-247
    • (2007) Ironmaking and Steelmaking , vol.34 , Issue.3 , pp. 241-247
    • Martín, R.D.1    Obeso, F.2    Mochón, J.3    Barea, R.4    Jiménez, J.5
  • 10
    • 17644388482 scopus 로고    scopus 로고
    • Application of Bayesian network to predicting silicon content in hot metal
    • Liu Xue-Yi, Liu Xiang-Guan, Wang Wen-Hui. Application of Bayesian network to predicting silicon content in hot metal. Iron and Steel, 2005, 40(3): 17-20
    • (2005) Iron and Steel , vol.40 , Issue.3 , pp. 17-20
    • Liu, X.-Y.1    Liu, X.-G.2    Wang, W.-H.3
  • 11
    • 33244454512 scopus 로고    scopus 로고
    • Prediction of silicon content in blast furnace hot metal using partial least squares (PLS)
    • Bhattacharya T. Prediction of silicon content in blast furnace hot metal using partial least squares (PLS). ISIJ International, 2005, 45(12): 1943-1945
    • (2005) ISIJ International , vol.45 , Issue.12 , pp. 1943-1945
    • Bhattacharya, T.1
  • 12
    • 67649572362 scopus 로고    scopus 로고
    • Application of SVM to prediction of silicon content in hot metal
    • Jian Ling, Liu Xiang-Guan. Application of SVM to prediction of silicon content in hot metal. Metallurgical Industry Automation, 2005, 29(3): 33-36
    • (2005) Metallurgical Industry Automation , vol.29 , Issue.3 , pp. 33-36
    • Jian, L.1    Liu, X.-G.2
  • 14
    • 44349114398 scopus 로고    scopus 로고
    • Assessing the predictability for blast furnace system through nonlinear time series analysis
    • Gao C H, Zhou Z M, Chen J M. Assessing the predictability for blast furnace system through nonlinear time series analysis. Industrial and Engineering Chemistry Research, 2008, 47(9): 3037-3045
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , Issue.9 , pp. 3037-3045
    • Gao, C.H.1    Zhou, Z.M.2    Chen, J.M.3
  • 15
    • 3142695593 scopus 로고    scopus 로고
    • Chaotic identification of BF ironmaking process I: the calculation of saturated correlative dimension
    • Gao Chuan-Hou, Liu Xiang-Guan. Chaotic identification of BF ironmaking process I: the calculation of saturated correlative dimension. Acta Metallurgica Sinica, 2004, 40(4): 347-350
    • (2004) Acta Metallurgica Sinica , vol.40 , Issue.4 , pp. 347-350
    • Gao, C.-H.1    Liu, X.-G.2
  • 16
    • 65349142587 scopus 로고    scopus 로고
    • A chaos-based iterated multistep predictor for blast furnace ironmaking process
    • Gao C H, Chen J M, Zeng J S, Liu X Y, Sun Y X. A chaos-based iterated multistep predictor for blast furnace ironmaking process. AIChE Journal, 2009, 55(4): 947-962
    • (2009) AIChE Journal , vol.55 , Issue.4 , pp. 947-962
    • Gao, C.H.1    Chen, J.M.2    Zeng, J.S.3    Liu, X.Y.4    Sun, Y.X.5
  • 17
    • 0001778461 scopus 로고    scopus 로고
    • Dynamics from multivariate time series
    • Cao L Y, Mees A, Judd K. Dynamics from multivariate time series. Physica D, 1998, 121(1-2): 75-88
    • (1998) Physica D , vol.121 , Issue.1-2 , pp. 75-88
    • Cao, L.Y.1    Mees, A.2    Judd, K.3
  • 21
  • 22
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • Kennel M B, Brown R, Abarbanel H D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 1992, 45(6): 3403-3411
    • (1992) Physical Review A , vol.45 , Issue.6 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.