메뉴 건너뛰기




Volumn 183, Issue 1, 2007, Pages 111-116

Predicting the performance of submerged arc furnace with varied raw material combinations using artificial neural network

Author keywords

Artificial neural networks; Multivariable linear regression; Production capability index; Raw materials; Submerged arc furnace

Indexed keywords

BRIQUETTING; COKE; LEARNING ALGORITHMS; OPTIMIZATION; ORE PELLETS; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS;

EID: 33846612754     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2006.10.004     Document Type: Article
Times cited : (17)

References (17)
  • 1
    • 0343043826 scopus 로고
    • Towards cleaner and greener technology-coal-based oxygen smelting for production of high carbon ferrochromium
    • Lydenburg and Rustenburg, South Africa
    • Warner N.A. Towards cleaner and greener technology-coal-based oxygen smelting for production of high carbon ferrochromium. Paper Presented to Consolidated Metallurgical Industries Ltd. Lydenburg and Rustenburg, South Africa (1992)
    • (1992) Paper Presented to Consolidated Metallurgical Industries Ltd.
    • Warner, N.A.1
  • 3
    • 0034784107 scopus 로고    scopus 로고
    • Effect of preheat, bed porosity, and charge control on thermal response of submerged arc furnace producing ferrochromium
    • Ranganathan S., and Godiwalla K.M. Effect of preheat, bed porosity, and charge control on thermal response of submerged arc furnace producing ferrochromium. Ironmaking Steelmaking (UK) 28 3 (2001) 273-278
    • (2001) Ironmaking Steelmaking (UK) , vol.28 , Issue.3 , pp. 273-278
    • Ranganathan, S.1    Godiwalla, K.M.2
  • 4
    • 22944455840 scopus 로고    scopus 로고
    • Control of silicon in high carbon ferrochromium produced in submerged arc furnace through redistribution of quartzite in the charge bed
    • Ranganathan S., Mishra S.N., Mishra R., and Singh B.K. Control of silicon in high carbon ferrochromium produced in submerged arc furnace through redistribution of quartzite in the charge bed. Ironmaking Steelmaking 32 2 (2005) 177-1848
    • (2005) Ironmaking Steelmaking , vol.32 , Issue.2 , pp. 177-1848
    • Ranganathan, S.1    Mishra, S.N.2    Mishra, R.3    Singh, B.K.4
  • 6
    • 0036823383 scopus 로고    scopus 로고
    • Dynamic modeling of the electric arc furnace process using artificial neural networks
    • Baumert J.C., Engel R., and Weiler C. Dynamic modeling of the electric arc furnace process using artificial neural networks. Rev. Metall. 99 10 (2002) 839-849
    • (2002) Rev. Metall. , vol.99 , Issue.10 , pp. 839-849
    • Baumert, J.C.1    Engel, R.2    Weiler, C.3
  • 8
    • 3242883838 scopus 로고    scopus 로고
    • Design and modeling of electrical arc furnaces
    • Joorabian M., Saedian A., and Nasiri M. Design and modeling of electrical arc furnaces. J. Sci. Technol. 15 57A (2004) 42-52
    • (2004) J. Sci. Technol. , vol.15 , Issue.57 A , pp. 42-52
    • Joorabian, M.1    Saedian, A.2    Nasiri, M.3
  • 9
    • 0029290559 scopus 로고
    • Neural network control system for electric arc furnaces
    • Staib W.E. Neural network control system for electric arc furnaces. M. P. T. Int. 2 (1995) 58-61
    • (1995) M. P. T. Int. , vol.2 , pp. 58-61
    • Staib, W.E.1
  • 10
    • 0030123309 scopus 로고    scopus 로고
    • On-line model of blast furnace gas distribution
    • Nikus M., and Saxén H. On-line model of blast furnace gas distribution. Steel Res. 67 (1996) 121-126
    • (1996) Steel Res. , vol.67 , pp. 121-126
    • Nikus, M.1    Saxén, H.2
  • 11
    • 84953582800 scopus 로고
    • Artificial neural networks for predicting silicon content in raw iron from blast furnaces
    • Abhay B., Bulsari, and Saxén H. Artificial neural networks for predicting silicon content in raw iron from blast furnaces. ICCI (1991) 642-644
    • (1991) ICCI , pp. 642-644
    • Abhay, B.1    Bulsari2    Saxén, H.3
  • 12
    • 0026930345 scopus 로고
    • Neural networks and pattern recognition of blast furnace operation data
    • Otsuka Y., et al. Neural networks and pattern recognition of blast furnace operation data. Kobelco Technol. Rev. (1992) 12
    • (1992) Kobelco Technol. Rev. , pp. 12
    • Otsuka, Y.1
  • 14
    • 33846582486 scopus 로고
    • Dynamic model for the high-temperature part of the carbothermic silicon metal process
    • Tuset J.Kr., Tveit H., and Page I.G. (Eds), FFF, Trondheim, Norway
    • Andresen B., and Tuset J.K. Dynamic model for the high-temperature part of the carbothermic silicon metal process. In: Tuset J.Kr., Tveit H., and Page I.G. (Eds). INFACON 7 (1995), FFF, Trondheim, Norway 535-544
    • (1995) INFACON 7 , pp. 535-544
    • Andresen, B.1    Tuset, J.K.2
  • 16
    • 0035480622 scopus 로고    scopus 로고
    • Modeling of ac arcs in submerged-arc furnaces for production of silicon and ferrosilicon
    • Saevarsdottir G.A., Bakken J.A., Sevastyanenko V.G., and Gu L. Modeling of ac arcs in submerged-arc furnaces for production of silicon and ferrosilicon. Iron Steelmaker (USA) 28 10 (2001) 51-57
    • (2001) Iron Steelmaker (USA) , vol.28 , Issue.10 , pp. 51-57
    • Saevarsdottir, G.A.1    Bakken, J.A.2    Sevastyanenko, V.G.3    Gu, L.4
  • 17
    • 85060364511 scopus 로고    scopus 로고
    • http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/backpr15.html.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.