-
1
-
-
47349097011
-
Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary
-
Puzyn, T.; Suzuki, N.; Haranczyk, M.; Rak, J. Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary J. Chem. Inf. and Model. 2008, 48, 1174-1180
-
(2008)
J. Chem. Inf. and Model.
, vol.48
, pp. 1174-1180
-
-
Puzyn, T.1
Suzuki, N.2
Haranczyk, M.3
Rak, J.4
-
2
-
-
67650457078
-
DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes
-
Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes Nature. 2009, 460, 250-253
-
(2009)
Nature
, vol.460
, pp. 250-253
-
-
Tu, X.1
Manohar, S.2
Jagota, A.3
Zheng, M.4
-
3
-
-
66349085884
-
Molecular-level interactions in soils and sediments: The role of aromatic p-systems
-
Keiluweit, M.; Kleber, M. Molecular-level interactions in soils and sediments: The role of aromatic p-systems Environ. Sci. Technol. 2009, 43, 3421-3429
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 3421-3429
-
-
Keiluweit, M.1
Kleber, M.2
-
4
-
-
51949088707
-
Adsorption of hydroxyl- and amino- substituted aromatics to carbon nanotubes
-
Chen, W.; Duan, L.; Wang, L.; Zhu, D. Adsorption of hydroxyl- and amino- substituted aromatics to carbon nanotubes Environ. Sci. Technol. 2008, 42, 6862-6868
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 6862-6868
-
-
Chen, W.1
Duan, L.2
Wang, L.3
Zhu, D.4
-
5
-
-
54749136634
-
Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups
-
Lin, D.; Xing, B. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups Environ. Sci. Technol. 2008, 42, 7254-7259
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 7254-7259
-
-
Lin, D.1
Xing, B.2
-
6
-
-
66449100608
-
Comment on Adsorption of hydroxyl- and amino-substituted aromatics to carbon nanotubes
-
Jiang, J.; Pang, S.-Y.; Ma, J. Comment on Adsorption of hydroxyl- and amino-substituted aromatics to carbon nanotubes Environ. Sci. Technol. 2009, 43, 3398-3399
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 3398-3399
-
-
Jiang, J.1
Pang, S.-Y.2
Ma, J.3
-
7
-
-
66449085266
-
Response to Comment on Adsorption of hydroxyl- and amino- substituted aromatics to carbon nanotubes
-
Chen, W.; Duan, L.; Wang, L.; Zhu, D. Response to Comment on Adsorption of hydroxyl- and amino- substituted aromatics to carbon nanotubes Environ. Sci. Technol. 2009, 43, 3400-3401
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 3400-3401
-
-
Chen, W.1
Duan, L.2
Wang, L.3
Zhu, D.4
-
8
-
-
63649098959
-
A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube
-
Rajesh, C.; Majumder, C.; Mizuseki, H.; Kawazoe, Y. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube J. Chem. Phys. 2009, 130, 124911-124916
-
(2009)
J. Chem. Phys.
, vol.130
, pp. 124911-124916
-
-
Rajesh, C.1
Majumder, C.2
Mizuseki, H.3
Kawazoe, Y.4
-
9
-
-
42549089260
-
First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes
-
Gowtham, S.; Scheicher, R. H.; Pandey, R.; Karna, S. P.; Ahuja, R. First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes Nanotechnology 2008, 19, 125701-125706
-
(2008)
Nanotechnology
, vol.19
, pp. 125701-125706
-
-
Gowtham, S.1
Scheicher, R.H.2
Pandey, R.3
Karna, S.P.4
Ahuja, R.5
-
10
-
-
43049141516
-
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
-
Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 2008, 120, 215-241
-
(2008)
Theor. Chem. Acc.
, vol.120
, pp. 215-241
-
-
Zhao, Y.1
Truhlar, D.G.2
-
11
-
-
58149235202
-
Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules
-
Hohenstein, E. G.; Chill, S. T.; Sherrill, C. D. Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules J. Chem. Theory. Comput. 2008, 4, 1996-2000
-
(2008)
J. Chem. Theory. Comput.
, vol.4
, pp. 1996-2000
-
-
Hohenstein, E.G.1
Chill, S.T.2
Sherrill, C.D.3
-
12
-
-
72649097565
-
Assessment of approximate quantum chemical methods for calculating the interaction energy of nucleic acid bases with graphene and carbon nanotubes
-
Ramraj, A.; Hillier, I. H.; Vincent, M. A.; Burton, N. A. Assessment of approximate quantum chemical methods for calculating the interaction energy of nucleic acid bases with graphene and carbon nanotubes Chem. Phys. Lett. 2010, 484, 295-298
-
(2010)
Chem. Phys. Lett.
, vol.484
, pp. 295-298
-
-
Ramraj, A.1
Hillier, I.H.2
Vincent, M.A.3
Burton, N.A.4
-
13
-
-
4043164887
-
Accurate description of van der Waals complexes by density functional theory including empirical corrections
-
Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections J. Comput. Chem. 2004, 25, 1463-1473
-
(2004)
J. Comput. Chem.
, vol.25
, pp. 1463-1473
-
-
Grimme, S.1
-
14
-
-
33846148294
-
Can the DFT-D method describe the full range of noncovalent interactions found in large biomolecules
-
Morgado, C.; Vincent, M. A.; Hillier, I. H.; Shan, X. Can the DFT-D method describe the full range of noncovalent interactions found in large biomolecules Phys. Chem. Chem. Phys. 2007, 9, 448-451
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 448-451
-
-
Morgado, C.1
Vincent, M.A.2
Hillier, I.H.3
Shan, X.4
-
15
-
-
34347273004
-
Semiempirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules
-
McNamara, J. P.; Hillier, I. H. Semiempirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules Phys. Chem. Chem. Phys. 2007, 9, 2362-2370
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 2362-2370
-
-
McNamara, J.P.1
Hillier, I.H.2
-
16
-
-
0038626673
-
-
revision C.02; Gaussian, Inc.: Wallingford, CT
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al.Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. GAUSSIAN 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
-
(2004)
GAUSSIAN 03
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery Jr., J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Bakken, V.36
Adamo, C.37
Jaramillo, J.38
Gomperts, R.39
Stratmann, R.E.40
Yazyev, O.41
Austin, A.J.42
Cammi, R.43
Pomelli, C.44
Ochterski, J.W.45
Ayala, P.Y.46
Morokuma, K.47
Voth, G.A.48
Salvador, P.49
Dannenberg, J.J.50
Zakrzewski, V.G.51
Dapprich, S.52
Daniels, A.D.53
Strain, M.C.54
Farkas, O.55
Malick, D.K.56
Rabuck, A.D.57
Raghavachari, K.58
Foresman, J.B.59
Ortiz, J.V.60
Cui, Q.61
Baboul, A.G.62
Clifford, S.63
Cioslowski, J.64
Stefanov, B.B.65
Liu, G.66
Liashenko, A.67
Piskorz, P.68
Komaromi, I.69
Martin, R.L.70
Fox, D.J.71
Keith, T.72
Allaham, M.A.73
Peng, C.Y.74
Nanayakkara, A.75
Challacombe, M.76
Gill, P.M.W.77
Johnson, B.78
Chen, W.79
Wong, M.W.80
Gonzalez, C.81
Pople, J.A.82
more..
-
17
-
-
1642396584
-
The use of methods involving semiempirical molecular orbital theory to study the structure and reactivity of transition metal complexes
-
Mohr, M.; McNamara, J. P.; Wang, H.; Rajeev, S. A.; Ge, J.; Morgado, C. A.; Hillier, I. H. The use of methods involving semiempirical molecular orbital theory to study the structure and reactivity of transition metal complexes Faraday Discuss. 2003, 124, 413-428
-
(2003)
Faraday Discuss.
, vol.124
, pp. 413-428
-
-
Mohr, M.1
McNamara, J.P.2
Wang, H.3
Rajeev, S.A.4
Ge, J.5
Morgado, C.A.6
Hillier, I.H.7
-
18
-
-
33744470857
-
Benchmark database of accurate (MP2 and CCSD (T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
-
Jurecka, P.; Sponer, J.; Cerny, J.; Hobza, P. Benchmark database of accurate (MP2 and CCSD (T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs Phys. Chem. Chem. Phys. 2006, 8, 1985-1993
-
(2006)
Phys. Chem. Chem. Phys.
, vol.8
, pp. 1985-1993
-
-
Jurecka, P.1
Sponer, J.2
Cerny, J.3
Hobza, P.4
-
19
-
-
58149529439
-
Binding of DNA nucleobases and nucleosides with graphene
-
Varghese, N.; Mogera, U.; Govindaraj, A.; Das, A.; Maiti, P. K.; Sood, A. K.; Rao, C. N. R. Binding of DNA nucleobases and nucleosides with graphene ChemPhysChem. 2009, 10, 206-210
-
(2009)
ChemPhysChem.
, vol.10
, pp. 206-210
-
-
Varghese, N.1
Mogera, U.2
Govindaraj, A.3
Das, A.4
Maiti, P.K.5
Sood, A.K.6
Rao, C.N.R.7
-
20
-
-
67849101722
-
Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes
-
Rezac, J.; Fanfrlik, J.; Salahub, D.; Hobza, P. Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes J. Chem. Theory Comput. 2009, 5, 1749-1760
-
(2009)
J. Chem. Theory Comput.
, vol.5
, pp. 1749-1760
-
-
Rezac, J.1
Fanfrlik, J.2
Salahub, D.3
Hobza, P.4
|