메뉴 건너뛰기




Volumn 6, Issue 4, 2010, Pages 1793-1803

Ga-based adaptive neural network controllers for nonlinear systems

Author keywords

Genetic algorithm; Lyapunov stability theory; Modified adaptive law; Neural network controller

Indexed keywords

ADAPTIVE LAWS; ADAPTIVE NEURAL NETWORK CONTROLLER; CONTROL METHODOLOGY; ERROR BOUND; INITIAL VALUES; LYAPUNOV STABILITY THEORY; MODELING ERRORS; NEURAL NETWORK CONTROLLER; NEURAL NETWORK CONTROLLERS; NONLINEAR PLANT; NUMERICAL SIMULATION; PARAMETER VECTORS; REFERENCE MODELS; REFERENCE TRAJECTORIES; SIMULATION RESULT; STATE ERRORS;

EID: 77951906463     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (65)

References (28)
  • 5
    • 0033078491 scopus 로고    scopus 로고
    • Fuzzy control design for the trajectory tracking on uncertain nonlinear systems.
    • W. J. Wang and H. R. Lin, Fuzzy control design for the trajectory tracking on uncertain nonlinear systems. IEEE Trans. Fuzzy Syst.. vol.7, no.1, pp.53-62. 1999.
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.1 , pp. 53-62
    • Wang, W.J.1    Lin, H.R.2
  • 7
    • 0003052380 scopus 로고
    • Genetic algorithms for fuzzy controller
    • C. L. Karr, Genetic algorithms for fuzzy controller. Al Expert, vol.6, no.2. pp.26-33. 1991.
    • (1991) Al Expert , vol.6 , Issue.2 , pp. 26-33
    • Karr, C.L.1
  • 8
    • 48249130402 scopus 로고    scopus 로고
    • Fuzzy genetic algorithm based on principal indices operation and quasi-linear fuzzy number and its performance.
    • F. C. Li. L. M. Liu and Y. Shi. Fuzzy genetic algorithm based on principal indices operation and quasi-linear fuzzy number and its performance. International Journal of Innovative Computing. Information and Control, vol.4. no.6. pp.1455-1464. 2008.
    • (2008) International Journal of Innovative Computing. Information and Control , vol.4 , Issue.6 , pp. 1455-1464
    • Li, F.C.1    Liu, L.M.2    Shi., Y.3
  • 10
    • 0024878952 scopus 로고
    • Theory of the backup-propagation neural network
    • R. Hecht-Nielsen, Theory of the backup-propagation neural network, Proc. of the IEEE IJCNN, vol.1. pp.593-605. 1989.
    • (1989) Proc. of the IEEE IJCNN , vol.1 , pp. 593-605
    • Hecht-Nielsen, R.1
  • 11
    • 0029207879 scopus 로고
    • Diagonal recurrent neural networks for dynamic systems control
    • C. C. Ku and K. Y. Lee, Diagonal recurrent neural networks for dynamic systems control. IEEE Trans. Neural Networks, vol.6. no.1. pp.144-156. 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 144-156
    • Ku, C.C.1    Lee, K.Y.2
  • 12
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P. J. Werbos. Backpropagation through time: What it does and how to do it, Proc. of the IEEE, vol.78. no.10. pp.1550-1560. 1990.
    • (1990) Proc. of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • P. J., Werbos.1
  • 13
    • 56949099737 scopus 로고    scopus 로고
    • New robust stability of cellular neural networks with time-varying discrete and distributed delays
    • Y. Chen and W. Su, New robust stability of cellular neural networks with time-varying discrete and distributed delays, International Journal of Innovative Computing. Information and Control, vol.3. no.6(B). pp.1549-1556, 2007.
    • (2007) International Journal of Innovative Computing. Information and Control , vol.3 , Issue.6 , pp. 1549-1556
    • Chen, Y.1    Su, W.2
  • 14
    • 54249169816 scopus 로고    scopus 로고
    • Exponential stability analysis for discrete-time switched linear systems with time-delay
    • R. Wang and J. Zhao, Exponential stability analysis for discrete-time switched linear systems with time-delay, International Journal of Innovative Computing. Informatton and Control, vol.3. no.6(B), pp.1557-1564. 2007.
    • (2007) International Journal of Innovative Computing, Informatton and Control , vol.3 , Issue.6 , pp. 1557-1564
    • Wang, R.1    Zhao, J.2
  • 16
    • 58349108262 scopus 로고    scopus 로고
    • GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems
    • P. C. Chen, C. W. Chen and W. L. Chiang, GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems, Expert Systems wtth Applications, vol.36. no.3. pp..5872-5879. 2009.
    • (2009) Expert Systems wtth Applications , vol.36 , Issue.3 , pp. 5872-5879
    • Chen, P.C.1    Chen, C.W.2    Chiang, W.L.3
  • 18
    • 0025747581 scopus 로고
    • Approximation theory and feedforward network
    • E. K. Blum and L. K. Li, Approximation theory and feedforward network, Neural Networks, vol.4, no.4. pp.511-515. 1991.
    • (1991) Neural Networks , vol.4 , Issue.4 , pp. 511-515
    • Blum, E.K.1    Li, L.K.2
  • 19
    • 0028428006 scopus 로고
    • A robust back propagation learning algorithm for function approximation
    • D. S. Chen and C. Jain. A robust back propagation learning algorithm for function approximation. IEEE Trans. Neural Networks, vol.5, no.3. pp.467-479, 1994.
    • (1994) IEEE Trans, Neural Networks , vol.5 , Issue.3 , pp. 467-479
    • Chen, D.S.1    Jain, C.2
  • 20
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous-time recurrent neural network
    • K. Funahashi and Y. Nakamura. Approximation of dynamical systems by continuous-time recurrent neural network. Neural Networks, vol.6. no.6. pp.801-806. 1993.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 801-806
    • Funahashi, K.1    Nakamura, Y.2
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximator
    • K. M. Hornik. M. Stinchcomhe and H. White, Multilayer feedforward networks are universal approximator. Neural Networks, vol.2. no.5. pp.359-366. 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.M.1    Stinchcomhe, M.2    White, H.3
  • 22
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • J. C. Mason and M. G. Cox (eds.). Clarendon. Oxford. U.K
    • M. J. D. Powell. Radial basis functions for multivariable interpolation: A review, in Algorithms for Approximation, J. C. Mason and M. G. Cox (eds.). Clarendon. Oxford. U.K., 1987.
    • (1987) Algorithms for Approximation
    • Powell, M.J.D.1
  • 23
    • 0001739142 scopus 로고
    • The theory of radial functions for multivariable approximation
    • W. Light (ed), Oxford. U.K., Oxthrd Univ. Press
    • M. J. D. Powell. The theory of radial functions for multivariable approximation in 1990. in Advances in Numerical Analysis II, W. Light (ed), Oxford. U.K., Oxthrd Univ. Press. 1992.
    • (1992) Advances in Numerical Analysis II
    • M. J. D., Powell.1
  • 24
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function network
    • J. Park and I. W. Sandberg, Universal approximation using radial-basis-function network, Neural Computation, vol.3. no.2. pp.246-257.1991.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 25
    • 58349108262 scopus 로고    scopus 로고
    • GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems
    • P. C. Chen, C. W. Chen and W. L. Chiang, GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems, Expert Systems wtth Applications, vol.36. no.3, pp.5872-5879. 2009.
    • (2009) Expert Systems wtth Applications , vol.36 , Issue.3 , pp. 5872-5879
    • Chen, P.C.1    Chen, C.W.2    Chiang, W.L.3
  • 26
    • 37549031640 scopus 로고    scopus 로고
    • Intelligent sliding-mode control using RBFN for magnetic levitation system
    • F. J. Lin. L. I. Teng and P. H. Shieh, Intelligent sliding-mode control using RBFN for magnetic levitation system, IEEE Trans. Industrtal Electronics, vol.54, no.3, pp.1752-1762. 2007.
    • (2007) IEEE Trans. Industrtal Electronics , vol.54 , Issue.3 , pp. 1752-1762
    • Lin, F.J.1    Teng, L.I.2    Shieh, P.H.3
  • 28
    • 33746029256 scopus 로고
    • Adaptive control of nonlinear continuous time systems using neural networks general relative degree and MIMO case
    • C.-C. Liu and F.-C. Chen. Adaptive control of nonlinear continuous time systems using neural networks general relative degree and MIMO case, Int. J. Contr., vol.58, no.2, pp.317-335. 1993.
    • (1993) Int. J. Contr. , vol.58 , Issue.2 , pp. 317-335
    • Liu, C.-C.1    Chen, F.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.