-
1
-
-
1842616539
-
-
10.1103/PhysRevE.68.065103
-
R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas, Phys. Rev. E 68, 065103 (R) (2003). 10.1103/PhysRevE.68.065103
-
(2003)
Phys. Rev. e
, vol.68
, pp. 065103
-
-
Guimera, R.1
Danon, L.2
Diaz-Guilera, A.3
Giralt, F.4
Arenas, A.5
-
2
-
-
0242663598
-
-
10.1103/PhysRevE.68.036122
-
M. E. J. Newman and J. Park, Phys. Rev. E 68, 036122 (2003). 10.1103/PhysRevE.68.036122
-
(2003)
Phys. Rev. e
, vol.68
, pp. 036122
-
-
Newman, M.E.J.1
Park, J.2
-
4
-
-
0033721503
-
-
10.1016/S1389-1286(00)00083-9
-
A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, Comput. Netw. 33, 309 (2000). 10.1016/S1389-1286(00) 00083-9
-
(2000)
Comput. Netw.
, vol.33
, pp. 309
-
-
Broder, A.1
Kumar, R.2
Maghoul, F.3
Raghavan, P.4
Rajagopalan, S.5
Stata, R.6
Tomkins, A.7
Wiener, J.8
-
5
-
-
42749105459
-
-
10.1103/PhysRevE.69.066106
-
M. Baiesi and M. Paczuski, Phys. Rev. E 69, 066106 (2004). 10.1103/PhysRevE.69.066106
-
(2004)
Phys. Rev. e
, vol.69
, pp. 066106
-
-
Baiesi, M.1
Paczuski, M.2
-
7
-
-
0038516810
-
-
10.1103/PhysRevLett.90.131101
-
D. Hughes, M. Paczuski, R. O. Dendy, P. Helander, and K. G. McClements, Phys. Rev. Lett. 90, 131101 (2003). 10.1103/PhysRevLett.90.131101
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 131101
-
-
Hughes, D.1
Paczuski, M.2
Dendy, R.O.3
Helander, P.4
McClements, K.G.5
-
8
-
-
0034609791
-
-
10.1038/35036627
-
H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. Barabási, Nature (London) 407, 651 (2000). 10.1038/35036627
-
(2000)
Nature (London)
, vol.407
, pp. 651
-
-
Jeong, H.1
Tombor, B.2
Albert, R.3
Oltvai, Z.N.4
Barabási, A.5
-
10
-
-
42749099621
-
-
10.1103/PhysRevE.68.026121
-
M. E. J. Newman, Phys. Rev. E 68, 026121 (2003). 10.1103/PhysRevE.68. 026121
-
(2003)
Phys. Rev. e
, vol.68
, pp. 026121
-
-
Newman, M.E.J.1
-
12
-
-
18744389789
-
-
10.1103/PhysRevLett.89.208701
-
M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002). 10.1103/PhysRevLett. 89.208701
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 208701
-
-
Newman, M.E.J.1
-
13
-
-
37649028224
-
-
10.1103/PhysRevE.69.026113
-
M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004). 10.1103/PhysRevE.69.026113
-
(2004)
Phys. Rev. e
, vol.69
, pp. 026113
-
-
Newman, M.E.J.1
Girvan, M.2
-
14
-
-
35448970947
-
-
10.1103/PhysRevE.76.046112
-
J. G. Foster, D. V. Foster, P. Grassberger, and M. Paczuski, Phys. Rev. E 76, 046112 (2007). 10.1103/PhysRevE.76.046112
-
(2007)
Phys. Rev. e
, vol.76
, pp. 046112
-
-
Foster, J.G.1
Foster, D.V.2
Grassberger, P.3
Paczuski, M.4
-
16
-
-
0038483826
-
-
10.1126/science.286.5439.509
-
A.-L. Barabási and R. Albert, Science 286, 509 (1999). 10.1126/science.286.5439.509
-
(1999)
Science
, vol.286
, pp. 509
-
-
Barabási, A.-L.1
Albert, R.2
-
17
-
-
0037174670
-
-
10.1126/science.298.5594.824
-
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Science 298, 824 (2002). 10.1126/science.298.5594.824
-
(2002)
Science
, vol.298
, pp. 824
-
-
Milo, R.1
Shen-Orr, S.2
Itzkovitz, S.3
Kashtan, N.4
Chklovskii, D.5
Alon, U.6
-
19
-
-
0037012880
-
-
10.1126/science.1065103
-
S. Maslov and K. Sneppen, Science 296, 910 (2002). 10.1126/science. 1065103
-
(2002)
Science
, vol.296
, pp. 910
-
-
Maslov, S.1
Sneppen, K.2
-
22
-
-
41349104828
-
-
10.1103/PhysRevE.65.026107
-
P. Holme and B. J. Kim, Phys. Rev. E 65, 026107 (2002). 10.1103/PhysRevE.65.026107
-
(2002)
Phys. Rev. e
, vol.65
, pp. 026107
-
-
Holme, P.1
Kim, B.J.2
-
24
-
-
41349115252
-
-
10.1103/PhysRevE.70.056115
-
E. Volz, Phys. Rev. E 70, 056115 (2004). 10.1103/PhysRevE.70.056115
-
(2004)
Phys. Rev. e
, vol.70
, pp. 056115
-
-
Volz, E.1
-
25
-
-
28844479734
-
-
10.1103/PhysRevE.72.036133
-
M. A. Serrano and M. Boguñá, Phys. Rev. E 72, 036133 (2005). 10.1103/PhysRevE.72.036133
-
(2005)
Phys. Rev. e
, vol.72
, pp. 036133
-
-
Serrano, M.A.1
Boguñá, M.2
-
26
-
-
11944253901
-
-
Cambridge University Press, Cambridge, England
-
B. Bollobas, Random Graphs (Cambridge University Press, Cambridge, England, 2001).
-
(2001)
Random Graphs
-
-
Bollobas, B.1
-
27
-
-
18744409361
-
-
10.1103/PhysRevLett.89.228701
-
J. Berg and M. Lässig, Phys. Rev. Lett. 89, 228701 (2002). 10.1103/PhysRevLett.89.228701
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 228701
-
-
Berg, J.1
Lässig, M.2
-
28
-
-
41349102726
-
-
10.1103/PhysRevE.70.066117
-
J. Park and M. E. J. Newman, Phys. Rev. E 70, 066117 (2004). 10.1103/PhysRevE.70.066117
-
(2004)
Phys. Rev. e
, vol.70
, pp. 066117
-
-
Park, J.1
Newman, M.E.J.2
-
30
-
-
27244450636
-
-
10.1103/PhysRevE.72.026136
-
J. Park and M. E. J. Newman, Phys. Rev. E 72, 026136 (2005). 10.1103/PhysRevE.72.026136
-
(2005)
Phys. Rev. e
, vol.72
, pp. 026136
-
-
Park, J.1
Newman, M.E.J.2
-
31
-
-
77951724538
-
-
This transition can also be seen as a first order percolation transition, since a giant percolating cluster is formed when the triangle fugacity is increased through the critical point. It is, however, substantially different from 'explosive percolation' in Achlioptas processes, which is also a first order percolation transition. While the Strauss model is a genuine thermodynamic model with Hamiltonian structure, and the phase transition happens as a true control parameter is increased, explosive percolation is a strictly nonequilibrium process where the control is done via a density of established bonds. One could also try to control the bond density in the Strauss model. This would lead to a continuous transition with phase coexistence, as in any system that undergoes a thermodynamic first order transition.
-
This transition can also be seen as a first order percolation transition, since a giant percolating cluster is formed when the triangle fugacity is increased through the critical point. It is, however, substantially different from 'explosive percolation' in Achlioptas processes, which is also a first order percolation transition. While the Strauss model is a genuine thermodynamic model with Hamiltonian structure, and the phase transition happens as a true control parameter is increased, explosive percolation is a strictly nonequilibrium process where the control is done via a density of established bonds. One could also try to control the bond density in the Strauss model. This would lead to a continuous transition with phase coexistence, as in any system that undergoes a thermodynamic first order transition.
-
-
-
-
32
-
-
0345055609
-
-
10th ed. (Addison-Wesley, Reading, MA
-
H. D. Young, R. A. Freedman, T. R. Sandin, and A. L. Ford, Sears and Zemansky's University Physics, 10th ed. (Addison-Wesley, Reading, MA, 1999).
-
(1999)
Sears and Zemansky's University Physics
-
-
Young, H.D.1
Freedman, R.A.2
Sandin, T.R.3
Ford, A.L.4
-
34
-
-
0000735838
-
-
10.1103/PhysRevLett.79.4669
-
P. Cizeau, S. Zapperi, G. Durin, and H. E. Stanley, Phys. Rev. Lett. 79, 4669 (1997). 10.1103/PhysRevLett.79.4669
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 4669
-
-
Cizeau, P.1
Zapperi, S.2
Durin, G.3
Stanley, H.E.4
-
36
-
-
33751543933
-
-
10.1103/PhysRevE.74.056114
-
M. A. Serrano and M. Boguñá, Phys. Rev. E 74, 056114 (2006). 10.1103/PhysRevE.74.056114
-
(2006)
Phys. Rev. e
, vol.74
, pp. 056114
-
-
Serrano, M.A.1
Boguñá, M.2
-
38
-
-
77951746616
-
-
e-print arXiv:0908.1143.
-
A. Jamakovic, P. Mahadevan, A. Vahdat, M. Boguñá, and D. Krioukov, e-print arXiv:0908.1143.
-
-
-
Jamakovic, A.1
Mahadevan, P.2
Vahdat, A.3
Boguñá, M.4
Krioukov, D.5
-
42
-
-
74049087026
-
-
10.1016/j.physrep.2009.11.002
-
S. Fortunato, Phys. Rep. 486, 75 (2010). 10.1016/j.physrep.2009.11.002
-
(2010)
Phys. Rep.
, vol.486
, pp. 75
-
-
Fortunato, S.1
-
43
-
-
42749100809
-
-
10.1103/PhysRevE.69.066133
-
M. E. J. Newman, Phys. Rev. E 69, 066133 (2004). 10.1103/PhysRevE.69. 066133
-
(2004)
Phys. Rev. e
, vol.69
, pp. 066133
-
-
Newman, M.E.J.1
-
44
-
-
77956890234
-
-
10.1093/biomet/57.1.97
-
W. K. Hastings, Biometrika 57, 97 (1970). 10.1093/biomet/57.1.97
-
(1970)
Biometrika
, vol.57
, pp. 97
-
-
Hastings, W.K.1
-
46
-
-
0037050026
-
-
10.1038/415141a
-
A. Gavin, Nature (London) 415, 141 (2002). 10.1038/415141a
-
(2002)
Nature (London)
, vol.415
, pp. 141
-
-
Gavin, A.1
-
48
-
-
84930064585
-
-
10.1103/PhysRevE.67.026112
-
E. Ravasz and A. L. Barabási, Phys. Rev. E 67, 026112 (2003). 10.1103/PhysRevE.67.026112
-
(2003)
Phys. Rev. e
, vol.67
, pp. 026112
-
-
Ravasz, E.1
Barabási, A.L.2
-
49
-
-
26944456272
-
-
10.1103/PhysRevE.71.057101
-
S. N. Soffer and A. Vázquez, Phys. Rev. E 71, 057101 (2005). 10.1103/PhysRevE.71.057101
-
(2005)
Phys. Rev. e
, vol.71
, pp. 057101
-
-
Soffer, S.N.1
Vázquez, A.2
-
50
-
-
0037199968
-
-
10.1126/science.1073374
-
E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási, Science 297, 1551 (2002). 10.1126/science.1073374
-
(2002)
Science
, vol.297
, pp. 1551
-
-
Ravasz, E.1
Somera, A.L.2
Mongru, D.A.3
Oltvai, Z.N.4
Barabási, A.-L.5
-
53
-
-
68649124583
-
-
10.1103/PhysRevLett.103.058701
-
M. E. J. Newman, Phys. Rev. Lett. 103, 058701 (2009). 10.1103/PhysRevLett.103.058701
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 058701
-
-
Newman, M.E.J.1
-
55
-
-
77951747443
-
-
(unpublished).
-
D. V. Foster (unpublished).
-
-
-
Foster, D.V.1
|