-
1
-
-
0001406706
-
Asymptotic chi-square tests for a large class of factor analysis models
-
Amemiya, Y., & Anderson, T. W. (1990). Asymptotic chi-square tests for a large class of factor analysis models. Annals of Statistics, 18, 1453-1463.
-
(1990)
Annals of Statistics
, vol.18
, pp. 1453-1463
-
-
Amemiya, Y.1
Anderson, T.W.2
-
2
-
-
0002914202
-
Full information estimation in the presence of incomplete data
-
In G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Erlbaum
-
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243-277). Mahwah, NJ: Erlbaum.
-
(1996)
Advanced Structural Equation Modeling: Issues and Techniques
, pp. 243-277
-
-
Arbuckle, J.L.1
-
4
-
-
0002726349
-
Bootstrap tests and confidence regions for functions of a covariance matrix
-
Beran, R., & Srivastava, M. S. (1985). Bootstrap tests and confidence regions for functions of a covariance matrix. The Annals of Statistics, 13, 95-115.
-
(1985)
The Annals of Statistics
, vol.13
, pp. 95-115
-
-
Beran, R.1
Srivastava, M.S.2
-
5
-
-
84965455706
-
Bootstrapping goodness-of-fit measures in structural equation models
-
Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods and Research, 21, 205-229.
-
(1992)
Sociological Methods and Research
, vol.21
, pp. 205-229
-
-
Bollen, K.A.1
Stine, R.A.2
-
7
-
-
85004870441
-
Asymptotically distribution-free methods for the analysis of covariancestructures
-
Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariancestructures. British Journal of Mathematical & Statistical Psychology, 37, 62-83.
-
(1984)
British Journal of Mathematical & Statistical Psychology
, vol.37
, pp. 62-83
-
-
Browne, M.W.1
-
8
-
-
0001922927
-
The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis
-
Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16-29.
-
(1996)
Psychological Methods
, vol.1
, pp. 16-29
-
-
Curran, P.J.1
West, S.G.2
Finch, J.F.3
-
9
-
-
77951656436
-
-
Boca Raton, FL: CRC Press LLC
-
Efron, B., & Tibshirani, R. J. (1998). An introduction to the bootstrap. Boca Raton, FL: CRC Press LLC.
-
(1998)
-
-
Efron, B.1
Tibshirani, R.J.2
-
10
-
-
0035756118
-
The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data
-
Enders, C. K. (2001). The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data. Psychological Methods, 6, 352-370.
-
(2001)
Psychological Methods
, vol.6
, pp. 352-370
-
-
Enders, C.K.1
-
11
-
-
0036400704
-
Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data
-
Enders, C. K. (2002). Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data. Multivariate Behavioral Research, 37, 359-377.
-
(2002)
Multivariate Behavioral Research
, vol.37
, pp. 359-377
-
-
Enders, C.K.1
-
12
-
-
32944463452
-
An SAS macro for implementing the modified Bollen-Stine bootstrap for missing data: Implementing the bootstrap using existing structural equation modeling software
-
Enders, C. K. (2005). An SAS macro for implementing the modified Bollen-Stine bootstrap for missing data: Implementing the bootstrap using existing structural equation modeling software. Structural Equation Modeling, 12, 620-641.
-
(2005)
Structural Equation Modeling
, vol.12
, pp. 620-641
-
-
Enders, C.K.1
-
13
-
-
2642541763
-
Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracyof inferences
-
Enders, C. K., & Peugh, J. L. (2004). Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracyof inferences. Structural Equation Modeling, 11, 1-19.
-
(2004)
Structural Equation Modeling
, vol.11
, pp. 1-19
-
-
Enders, C.K.1
Peugh, J.L.2
-
14
-
-
34250283902
-
A method for simulating non-normal distributions
-
Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43, 521-532.
-
(1978)
Psychometrika
, vol.43
, pp. 521-532
-
-
Fleishman, A.I.1
-
15
-
-
3042829565
-
A comparison of maximum-likelihood and asymptotically distribution-free methods of treating incomplete nonnormal data
-
Gold, M. S., Bentler, P. M., & Kim, K. H. (2003). A comparison of maximum-likelihood and asymptotically distribution-free methods of treating incomplete nonnormal data. Structural Equation Modeling, 10, 48-82.
-
(2003)
Structural Equation Modeling
, vol.10
, pp. 48-82
-
-
Gold, M.S.1
Bentler, P.M.2
Kim, K.H.3
-
16
-
-
0347249765
-
Adding missing-data-relevant variables to FIML-based structural equation models
-
Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.
-
(2003)
Structural Equation Modeling
, vol.10
, pp. 80-100
-
-
Graham, J.W.1
-
18
-
-
0026919385
-
Can test statistics in covariance structure analysis be trusted?
-
Hu, L.-T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351-362.
-
(1992)
Psychological Bulletin
, vol.112
, pp. 351-362
-
-
Hu, L.-T.1
Bentler, P.M.2
Kano, Y.3
-
21
-
-
0001010853
-
On structural equation modeling with data that are not missing completely at random
-
Muthen, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 52, 431-462.
-
(1987)
Psychometrika
, vol.52
, pp. 431-462
-
-
Muthen, B.1
Kaplan, D.2
Hollis, M.3
-
22
-
-
0038187864
-
Performance of bootstrapping approachesto model test statistics and parameter standard error estimation in structural equation modeling
-
Nevitt, J., & Hancock, G. R. (2001). Performance of bootstrapping approachesto model test statistics and parameter standard error estimation in structural equation modeling. Structural Equation Modeling, 8, 353-377.
-
(2001)
Structural Equation Modeling
, vol.8
, pp. 353-377
-
-
Nevitt, J.1
Hancock, G.R.2
-
23
-
-
51749109968
-
Simulating multivariate nonnormal data using an iterative algorithm
-
Ruscio, J., & Kaczetow, W. (2008). Simulating multivariate nonnormal data using an iterative algorithm. Multivariate Behavioral Research, 43, 355-381.
-
(2008)
Multivariate Behavioral Research
, vol.43
, pp. 355-381
-
-
Ruscio, J.1
Kaczetow, W.2
-
24
-
-
0003217529
-
Corrections to test statistics and standard errors in covariance structure analysis
-
In A. von Eye & C. C. Clogg (Eds.), Thousand Oaks, CA: Sage
-
Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399-419). Thousand Oaks, CA: Sage.
-
(1994)
Latent Variables Analysis: Applications For Developmental Research
, pp. 399-419
-
-
Satorra, A.1
Bentler, P.M.2
-
25
-
-
41149165338
-
Is the ML chi-square ever robust to nonnormality? A cautionary note with missing data
-
Savalei, V. (2008). Is the ML chi-square ever robust to nonnormality? A cautionary note with missing data. Structural Equation Modeling, 15, 1-22.
-
(2008)
Structural Equation Modeling
, vol.15
, pp. 1-22
-
-
Savalei, V.1
-
26
-
-
77951654107
-
Small sample statistics for incomplete nonnormal data: Extensions of complete data formulae and a Monte Carlo comparison
-
(in press)
-
Savalei, V. (in press). Small sample statistics for incomplete nonnormal data: Extensions of complete data formulae and a Monte Carlo comparison. Structural Equation Modeling.
-
Structural Equation Modeling
-
-
Savalei, V.1
-
27
-
-
18444385925
-
A statistically justified pairwise ML method for incomplete nonnormal data: A comparison with direct ML and pairwise ADF
-
Savalei, V., & Bentler, P. M. (2005). A statistically justified pairwise ML method for incomplete nonnormal data: A comparison with direct ML and pairwise ADF. Structural Equation Modeling, 12,183-214.
-
(2005)
Structural Equation Modeling
, vol.12
, pp. 183-214
-
-
Savalei, V.1
Bentler, P.M.2
-
28
-
-
0842272144
-
Simulating multivariate nonnormal distributions
-
Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 465-471.
-
(1983)
Psychometrika
, vol.48
, pp. 465-471
-
-
Vale, C.D.1
Maurelli, V.A.2
-
29
-
-
0345333337
-
Confirmatory factor analysis applications: Missing data problems and comparison of path models between populations
-
Werts, C. E., Rock, D. A., & Grandy, J. (1979). Confirmatory factor analysis applications: Missing data problems and comparison of path models between populations. Multivariate Behavioral Research, 14, 199-213.
-
(1979)
Multivariate Behavioral Research
, vol.14
, pp. 199-213
-
-
Werts, C.E.1
Rock, D.A.2
Grandy, J.3
-
30
-
-
0034555721
-
Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data
-
Yuan, K. H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30, 165-200.
-
(2000)
Sociological Methodology
, vol.30
, pp. 165-200
-
-
Yuan, K.H.1
Bentler, P.M.2
-
32
-
-
0002258287
-
Bootstrapping techniques in analysis of mean and covariance structures
-
In G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Erlbaum
-
Yung, Y.-F., & Bentler, P. M. (1996). Bootstrapping techniques in analysis of mean and covariance structures. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 195-226). Mahwah, NJ: Erlbaum.
-
(1996)
Advanced Structural Equation Modeling: Issues and Techniques
, pp. 195-226
-
-
Yung, Y.-F.1
Bentler, P.M.2
-
33
-
-
0001616302
-
Testing hypotheses about covariance matrices using bootstrap methods
-
Zhang, J., & Boos, D. D. (1993). Testing hypotheses about covariance matrices using bootstrap methods. Communications in Statistics-Theory and Methods, 22, 723-739.
-
(1993)
Communications In Statistics-Theory and Methods
, vol.22
, pp. 723-739
-
-
Zhang, J.1
Boos, D.D.2
|