메뉴 건너뛰기




Volumn 93, Issue 5, 2010, Pages 536-558

Symmetry and nonexistence of low Morse index solutions in unbounded domains

Author keywords

Nonexistence of solutions; Semilinear elliptic equations; Symmetry results; Unbounded domains

Indexed keywords


EID: 77951209137     PISSN: 00217824     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matpur.2009.08.003     Document Type: Article
Times cited : (37)

References (29)
  • 1
    • 4444270389 scopus 로고    scopus 로고
    • Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains
    • Aftalion A., Pacella F. Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains. C. R. Math. Acad. Sci. Paris 2004, 339(5):339-344.
    • (2004) C. R. Math. Acad. Sci. Paris , vol.339 , Issue.5 , pp. 339-344
    • Aftalion, A.1    Pacella, F.2
  • 3
    • 27944501701 scopus 로고    scopus 로고
    • Partial symmetry of least energy nodal solutions to some variational problems
    • Bartsch T., Weth T., Willem M. Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 2005, 96:1-18.
    • (2005) J. Anal. Math. , vol.96 , pp. 1-18
    • Bartsch, T.1    Weth, T.2    Willem, M.3
  • 4
    • 0000958868 scopus 로고
    • Infinitely many nonradial solutions of a Euclidean scalar field equation
    • Bartsch T., Willem M. Infinitely many nonradial solutions of a Euclidean scalar field equation. J. Funct. Anal. 1993, 117:447-460.
    • (1993) J. Funct. Anal. , vol.117 , pp. 447-460
    • Bartsch, T.1    Willem, M.2
  • 7
    • 3242749845 scopus 로고    scopus 로고
    • Positivity and radial symmetry of solutions to some variational problems in RN
    • Brock F. Positivity and radial symmetry of solutions to some variational problems in RN. J. Math. Anal. Appl. 2004, 296(1):226-243.
    • (2004) J. Math. Anal. Appl. , vol.296 , Issue.1 , pp. 226-243
    • Brock, F.1
  • 8
    • 2342419587 scopus 로고    scopus 로고
    • On the stability of radial solutions of semilinear elliptic equations in all of Rn
    • Cabré X., Capella A. On the stability of radial solutions of semilinear elliptic equations in all of Rn. C. R. Math. Acad. Sci. Paris 2004, 338(10):769-774.
    • (2004) C. R. Math. Acad. Sci. Paris , vol.338 , Issue.10 , pp. 769-774
    • Cabré, X.1    Capella, A.2
  • 9
    • 84974002703 scopus 로고
    • Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent
    • Chen C.C., Lin C.S. Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent. Duke Math. J. 1995, 78(2):315-334.
    • (1995) Duke Math. J. , vol.78 , Issue.2 , pp. 315-334
    • Chen, C.C.1    Lin, C.S.2
  • 10
    • 3042635720 scopus 로고    scopus 로고
    • Some nonexistence results for positive solutions of elliptic equations in unbounded domains
    • Damascelli L., Gladiali F. Some nonexistence results for positive solutions of elliptic equations in unbounded domains. Rev. Mat. Iberoamericana 2004, 20(1):67-86.
    • (2004) Rev. Mat. Iberoamericana , vol.20 , Issue.1 , pp. 67-86
    • Damascelli, L.1    Gladiali, F.2
  • 11
    • 14844289582 scopus 로고    scopus 로고
    • Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion
    • Dancer E.N. Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion. Trans. Amer. Math. Soc. 2005, 357(3):1225-1243.
    • (2005) Trans. Amer. Math. Soc. , vol.357 , Issue.3 , pp. 1225-1243
    • Dancer, E.N.1
  • 12
    • 2142781601 scopus 로고    scopus 로고
    • Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion. II
    • Dancer E.N. Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion. II. Indiana Univ. Math. J. 2004, 53(1):97-108.
    • (2004) Indiana Univ. Math. J. , vol.53 , Issue.1 , pp. 97-108
    • Dancer, E.N.1
  • 13
    • 37549038977 scopus 로고    scopus 로고
    • Stable and not too unstable solutions on Rn for small diffusion
    • Amer. Math. Soc., Providence, RI, Nonlinear Dynamics and Evolution Equations
    • Dancer E.N. Stable and not too unstable solutions on Rn for small diffusion. Fields Inst. Commun. 2006, vol. 48:67-93. Amer. Math. Soc., Providence, RI.
    • (2006) Fields Inst. Commun. , vol.48 , pp. 67-93
    • Dancer, E.N.1
  • 14
    • 74549160615 scopus 로고    scopus 로고
    • On the classification of solutions of -Δu=eu on RN: Stability outside a compact set
    • Dancer E.N., Farina A. On the classification of solutions of -Δu=eu on RN: Stability outside a compact set. Proc. Amer. Math. Soc. 2009, 137(4):1333-1338.
    • (2009) Proc. Amer. Math. Soc. , vol.137 , Issue.4 , pp. 1333-1338
    • Dancer, E.N.1    Farina, A.2
  • 15
    • 0001522791 scopus 로고
    • On a conformally invariant elliptic equation on RN
    • Ding W.Y. On a conformally invariant elliptic equation on RN. Comm. Math. Phys. 1986, 107:331-335.
    • (1986) Comm. Math. Phys. , vol.107 , pp. 331-335
    • Ding, W.Y.1
  • 16
    • 61749087372 scopus 로고    scopus 로고
    • Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities
    • Dupaigne L., Farina A. Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities. Nonlinear Anal. 2009, 70(8):2882-2888.
    • (2009) Nonlinear Anal. , vol.70 , Issue.8 , pp. 2882-2888
    • Dupaigne, L.1    Farina, A.2
  • 17
    • 34248165960 scopus 로고    scopus 로고
    • On the classification of solutions of the Lane-Emden equation on unbounded domains of RN
    • Farina A. On the classification of solutions of the Lane-Emden equation on unbounded domains of RN. J. Math. Pures Appl. (9) 2007, 87(5):537-561.
    • (2007) J. Math. Pures Appl. (9) , vol.87 , Issue.5 , pp. 537-561
    • Farina, A.1
  • 18
    • 0000924617 scopus 로고
    • Symmetry of positive solutions of nonlinear elliptic equations in Rn
    • Academic Press, New York, London, Mathematical Analysis and Applications, Part A
    • Gidas B., Ni Wei Ming, Nirenberg L. Symmetry of positive solutions of nonlinear elliptic equations in Rn. Adv. in Math. Suppl. Stud. 1981, vol. 7a:369-402. Academic Press, New York, London.
    • (1981) Adv. in Math. Suppl. Stud. , vol.7 , pp. 369-402
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 19
    • 84980182383 scopus 로고
    • Global and local behavior of positive solutions of nonlinear elliptic equations
    • Gidas B., Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 1981, 34:525-598.
    • (1981) Comm. Pure Appl. Math. , vol.34 , pp. 525-598
    • Gidas, B.1    Spruck, J.2
  • 20
    • 0000670650 scopus 로고
    • On the infinitely many solutions of a semilinear elliptic equation
    • Jones C.K.R.T., Küpper T. On the infinitely many solutions of a semilinear elliptic equation. SIAM J. Math. Anal. 1986, 17:803-835.
    • (1986) SIAM J. Math. Anal. , vol.17 , pp. 803-835
    • Jones, C.K.R.T.1    Küpper, T.2
  • 21
    • 34249974409 scopus 로고
    • Uniqueness of positive solutions of Δu-u+up=0 in Rn
    • Kwong M.K. Uniqueness of positive solutions of Δu-u+up=0 in Rn. Arch. Rational Mech. Anal. 1989, 105:243-266.
    • (1989) Arch. Rational Mech. Anal. , vol.105 , pp. 243-266
    • Kwong, M.K.1
  • 22
    • 62949124349 scopus 로고    scopus 로고
    • On the symmetry of minimizers
    • Maris M. On the symmetry of minimizers. Arch. Rational Mech. Anal. 2009, 192:311-330.
    • (2009) Arch. Rational Mech. Anal. , vol.192 , pp. 311-330
    • Maris, M.1
  • 23
    • 0344981521 scopus 로고    scopus 로고
    • Axial symmetry of solutions to semilinear elliptic equations in unbounded domains
    • Montefusco E. Axial symmetry of solutions to semilinear elliptic equations in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A 2003, 133(5):1175-1192.
    • (2003) Proc. Roy. Soc. Edinburgh Sect. A , vol.133 , Issue.5 , pp. 1175-1192
    • Montefusco, E.1
  • 24
    • 0037141863 scopus 로고    scopus 로고
    • Symmetry results for solutions of semilinear elliptic equations with convex nonlinearities
    • Pacella F. Symmetry results for solutions of semilinear elliptic equations with convex nonlinearities. J. Funct. Anal. 2002, 192(1):271-282.
    • (2002) J. Funct. Anal. , vol.192 , Issue.1 , pp. 271-282
    • Pacella, F.1
  • 25
    • 38749113602 scopus 로고    scopus 로고
    • Symmetry of solutions to semilinear elliptic equations via Morse index
    • Pacella F., Weth T. Symmetry of solutions to semilinear elliptic equations via Morse index. Proc. Amer. Math. Soc. 2007, 135(6):1753-1762.
    • (2007) Proc. Amer. Math. Soc. , vol.135 , Issue.6 , pp. 1753-1762
    • Pacella, F.1    Weth, T.2
  • 26
    • 0002403465 scopus 로고
    • On the eigenfunctions of the equation Δu+λf(u)=0
    • Pohožaev S.I. On the eigenfunctions of the equation Δu+λf(u)=0. Dokl. Akad. Nauk SSSR 1965, 165:36-39.
    • (1965) Dokl. Akad. Nauk SSSR , vol.165 , pp. 36-39
    • Pohožaev, S.I.1
  • 27
    • 0141685647 scopus 로고    scopus 로고
    • Partial symmetry and asymptotic behavior for some elliptic variational problems
    • Smets D., Willem M. Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial Differential Equations 2003, 18(1):57-75.
    • (2003) Calc. Var. Partial Differential Equations , vol.18 , Issue.1 , pp. 57-75
    • Smets, D.1    Willem, M.2
  • 28
    • 43649097607 scopus 로고    scopus 로고
    • Symmetry of solutions of semilinear elliptic problems
    • Van Schaftingen J., Willem M. Symmetry of solutions of semilinear elliptic problems. J. Eur. Math. Soc. (JEMS) 2008, 10(2):439-456.
    • (2008) J. Eur. Math. Soc. (JEMS) , vol.10 , Issue.2 , pp. 439-456
    • Van Schaftingen, J.1    Willem, M.2
  • 29
    • 33749244096 scopus 로고    scopus 로고
    • Energy bounds for entire nodal solutions of autonomous superlinear equations
    • Weth T. Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc. Var. Partial Differential Equations 2006, 27:421-437.
    • (2006) Calc. Var. Partial Differential Equations , vol.27 , pp. 421-437
    • Weth, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.