-
1
-
-
0001135181
-
One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation
-
J.M. Ball V.J. Mizel 1985 One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation Arch. Ration. Mech. Anal. 90 4 325 388
-
(1985)
Arch. Ration. Mech. Anal.
, vol.90
, Issue.4
, pp. 325-388
-
-
Ball, J.M.1
Mizel, V.J.2
-
2
-
-
27944501701
-
Partial symmetry of least energy nodal solutions to some variational problems
-
T. Bartsch T. Weth M. Willem 2005 Partial symmetry of least energy nodal solutions to some variational problems J. Anal. Math. 96 1 18
-
(2005)
J. Anal. Math.
, vol.96
, pp. 1-18
-
-
Bartsch, T.1
Weth, T.2
Willem, M.3
-
5
-
-
0013142746
-
-
Translations of Mathematical Monographs, AMS, Providence
-
Chen, Y.-Z., Wu, L.-C.: Second Order Elliptic Equations and Elliptic Systems. Translations of Mathematical Monographs, vol.174. AMS, Providence, 1998
-
(1998)
Second Order Elliptic Equations and Elliptic Systems
, vol.174
-
-
Chen, Y.-Z.1
Wu, L.-C.2
-
6
-
-
3242774353
-
On subcriticality assumptions for the existence of ground states of quasilinear elliptic equations. Adv
-
A. Ferrero F. Gazzola 2003 On subcriticality assumptions for the existence of ground states of quasilinear elliptic equations. Adv Differ. Equ. 8 9 1081 1106
-
(2003)
Differ. Equ.
, vol.8
, Issue.9
, pp. 1081-1106
-
-
Ferrero, A.1
Gazzola, F.2
-
11
-
-
0001389619
-
Radial symmetry of minimizers for some translation and rotation invariant functionals
-
O. Lopes 1996 Radial symmetry of minimizers for some translation and rotation invariant functionals J. Differ. Equ. 124 378 388
-
(1996)
J. Differ. Equ.
, vol.124
, pp. 378-388
-
-
Lopes, O.1
-
12
-
-
0006345676
-
Radial and nonradial minimizers for some radially symmetric functionals
-
O. Lopes 1996 Radial and nonradial minimizers for some radially symmetric functionals Eletr. J. Differ. Equ. 3 1 14
-
(1996)
Eletr. J. Differ. Equ.
, vol.3
, pp. 1-14
-
-
Lopes, O.1
-
13
-
-
36849031785
-
Symmetry of minimizers for some nonlocal variational problems
-
O. Lopes M. Mariş 2008 Symmetry of minimizers for some nonlocal variational problems J. Funct. Anal. 254 2 535 592
-
(2008)
J. Funct. Anal.
, vol.254
, Issue.2
, pp. 535-592
-
-
Lopes, O.1
Mariş, M.2
-
15
-
-
38749113602
-
Symmetry of solutions to semilinear elliptic equations via Morse index
-
F. Pacella T. Weth 2007 Symmetry of solutions to semilinear elliptic equations via Morse index Proc. Am. Math. Soc. 135 6 1753 1762
-
(2007)
Proc. Am. Math. Soc.
, vol.135
, Issue.6
, pp. 1753-1762
-
-
Pacella, F.1
Weth, T.2
-
16
-
-
0033209568
-
A strong maximum principle and a compact support principle for singular elliptic inequalities
-
P. Pucci J. Serrin H. Zou 1999 A strong maximum principle and a compact support principle for singular elliptic inequalities J. Math. Pures Appl. 78 769 789
-
(1999)
J. Math. Pures Appl.
, vol.78
, pp. 769-789
-
-
Pucci, P.1
Serrin, J.2
Zou, H.3
-
17
-
-
0141685647
-
Partial symmetry and asymptotic behavior for some elliptic variational problems
-
D. Smets M. Willem 2003 Partial symmetry and asymptotic behavior for some elliptic variational problems Calc. Var. PDE 18 57 75
-
(2003)
Calc. Var. PDE
, vol.18
, pp. 57-75
-
-
Smets, D.1
Willem, M.2
|