-
2
-
-
0034400761
-
On the Morse indices of sign changing solutions of nonlinear elliptic problems
-
T. Bartsch, K. C. Chang and Z. Q. Wang. On the Morse indices of sign changing solutions of nonlinear elliptic problems. Math. Z. 233 (2000), 655-677.
-
(2000)
Math. Z.
, vol.233
, pp. 655-677
-
-
Bartsch, T.1
Chang, K.C.2
Wang, Z.Q.3
-
3
-
-
84975997369
-
A remark on the nodal regions of the solutions of some super-linear elliptic equations
-
V. Benci and D. Fortunato. A remark on the nodal regions of the solutions of some super-linear elliptic equations. Proc. R. Soc. Edinb. A 111 (1989), 123-128.
-
(1989)
Proc. R. Soc. Edinb. A
, vol.111
, pp. 123-128
-
-
Benci, V.1
Fortunato, D.2
-
4
-
-
13844311748
-
On the method of moving planes and the sliding method
-
H. Berestycki and L. Nirenberg. On the method of moving planes and the sliding method. Bol. Soc. Brasil Mat. 22 (1991), 1-37.
-
(1991)
Bol. Soc. Brasil Mat.
, vol.22
, pp. 1-37
-
-
Berestycki, H.1
Nirenberg, L.2
-
6
-
-
84990602584
-
The principal eigenvalue and maximum principle for second-order elliptic operators in general domains
-
H. Berestycki, L. Nirenberg and S. R. S. Varadhan. The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47 (1994), 47-92.
-
(1994)
Commun. Pure Appl. Math.
, vol.47
, pp. 47-92
-
-
Berestycki, H.1
Nirenberg, L.2
Varadhan, S.R.S.3
-
7
-
-
85015471238
-
Further qualitative properties for elliptic equations in unbounded domains
-
Dedicated to Ennio De Giorgi.
-
H. Berestycki, L. A. Caffarelli and L. Nirenberg. Further qualitative properties for elliptic equations in unbounded domains. (Dedicated to Ennio De Giorgi.). Annli Scuola Norm. Sup. Pisa 25 (1998), 69-94.
-
(1998)
Annli Scuola Norm. Sup. Pisa
, vol.25
, pp. 69-94
-
-
Berestycki, H.1
Caffarelli, L.A.2
Nirenberg, L.3
-
8
-
-
0003863052
-
-
Mathematics and its Applications (Dordrecht: Kluwer Academic)
-
F. A. Berezin and M. A. Shubin. The Schrödinger equation. Mathematics and its Applications, vol. 66 (Dordrecht: Kluwer Academic, 1991).
-
(1991)
The Schrödinger Equation
, vol.66
-
-
Berezin, F.A.1
Shubin, M.A.2
-
9
-
-
84985345655
-
Continuous Steiner-symmetrization
-
F. Brock. Continuous Steiner-symmetrization. Math. Nachr. 172 (1995), 25-48.
-
(1995)
Math. Nachr.
, vol.172
, pp. 25-48
-
-
Brock, F.1
-
10
-
-
0035578399
-
On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions
-
F. Catrina and Z. Q. Wang. On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54 (2001), 229-258.
-
(2001)
Commun. Pure Appl. Math.
, vol.54
, pp. 229-258
-
-
Catrina, F.1
Wang, Z.Q.2
-
11
-
-
0005437692
-
Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
-
L. Damascelli, M. Grossi and F. Pacella. Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Annls Inst. H. Poincaré Analyse Non Linéaire 16 (1999), 631-652.
-
(1999)
Annls Inst. H. Poincaré Analyse Non Linéaire
, vol.16
, pp. 631-652
-
-
Damascelli, L.1
Grossi, M.2
Pacella, F.3
-
12
-
-
0033436674
-
Symmetry of ground states of p-Laplace equations via the moving plane method
-
L. Damascelli, F. Pacella and M. Ramaswamy. Symmetry of ground states of p-Laplace equations via the moving plane method. Arch. Ration. Mech. Analysis 148 (1999), 291-308.
-
(1999)
Arch. Ration. Mech. Analysis
, vol.148
, pp. 291-308
-
-
Damascelli, L.1
Pacella, F.2
Ramaswamy, M.3
-
13
-
-
84990614227
-
Nonsymmetric ground states of symmetric variational problems
-
M. J. Esteban. Nonsymmetric ground states of symmetric variational problems. Commun. Pure Appl. Math. 44 (1991), 259-274.
-
(1991)
Commun. Pure Appl. Math.
, vol.44
, pp. 259-274
-
-
Esteban, M.J.1
-
14
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
B. Gidas, W. M. Ni and L. Nirenberg. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68 (1979), 209-243.
-
(1979)
Commun. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.M.2
Nirenberg, L.3
-
16
-
-
0035635114
-
Locating the peaks of solutions via the maximum principle. I. The Neumann problem
-
C. S. Lin. Locating the peaks of solutions via the maximum principle. I. The Neumann problem. Commun. Pure Appl. Math. 54 (2001), 1065-1095.
-
(2001)
Commun. Pure Appl. Math.
, vol.54
, pp. 1065-1095
-
-
Lin, C.S.1
-
17
-
-
0038249182
-
Method of rotating planes applied to a singularly perturbed Neumann problem
-
C. S. Lin and I. Takagi. Method of rotating planes applied to a singularly perturbed Neumann problem. Calc. Var. PDEs 13 (2001), 519-536.
-
(2001)
Calc. Var. PDEs
, vol.13
, pp. 519-536
-
-
Lin, C.S.1
Takagi, I.2
-
18
-
-
85030707196
-
The concentration-compactness method in the calculus of variations. The locally compact case. I
-
P.-L. Lions. The concentration-compactness method in the calculus of variations. The locally compact case. I. Annls Inst. H. Poincaré Analyse Non Linéaire 1 (1984), 109-145.
-
(1984)
Annls Inst. H. Poincaré Analyse Non Linéaire
, vol.1
, pp. 109-145
-
-
Lions, P.-L.1
-
19
-
-
85030719142
-
The concentration-compactness method in the calculus of variations. The locally compact case. II
-
P.-L. Lions. The concentration-compactness method in the calculus of variations. The locally compact case. II. Annls Inst. H. Poincaré Analyse Non Linéaire 1 (1984), 223-283.
-
(1984)
Annls Inst. H. Poincaré Analyse Non Linéaire
, vol.1
, pp. 223-283
-
-
Lions, P.-L.1
-
20
-
-
0037141863
-
Symmetry results for solutions of semilinear elliptic equations with convex non-linearities
-
F. Pacella. Symmetry results for solutions of semilinear elliptic equations with convex non-linearities. J. Funct. Analysis 192 (2002), 271-282.
-
(2002)
J. Funct. Analysis
, vol.192
, pp. 271-282
-
-
Pacella, F.1
-
22
-
-
0001358147
-
A symmetry problem in potential theory
-
J. Serrin. A symmetry problem in potential theory. Arch. Ration. Mech. Analysis 43 (1971), 304-318.
-
(1971)
Arch. Ration. Mech. Analysis
, vol.43
, pp. 304-318
-
-
Serrin, J.1
-
23
-
-
0033463505
-
Symmetry of ground states of quasilinear elliptic equations
-
J. Serrin and H. Zou. Symmetry of ground states of quasilinear elliptic equations. Arch. Ration. Mech. Analysis 148 (1999), 265-290.
-
(1999)
Arch. Ration. Mech. Analysis
, vol.148
, pp. 265-290
-
-
Serrin, J.1
Zou, H.2
|