-
1
-
-
0002652285
-
A maximum entropy approach to natural language processing
-
A. L. Berger, S. A. D. Pietra, and V. J. D. Pietra. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):3971, 1996.
-
(1996)
Computational Linguistics
, vol.22
, Issue.1
, pp. 3971
-
-
Berger, A.L.1
Pietra, S.A.D.2
Pietra, V.J.D.3
-
4
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: From pairwise approach to listwise approach. In ICML, pages 129-136, 2007.
-
(2007)
ICML
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
5
-
-
65449139973
-
Structured learning for non-smooth ranking losses
-
ACM
-
S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya. Structured learning for non-smooth ranking losses. In SIGKDD Conference, pages 88-96. ACM, 2008.
-
(2008)
SIGKDD Conference
, pp. 88-96
-
-
Chakrabarti, S.1
Khanna, R.2
Sawant, U.3
Bhattacharyya, C.4
-
6
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4:933-969, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
7
-
-
0033645041
-
IR evaluation methods for retrieving highly relevant documents
-
K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In SIGIR Conference, pages 41-48, 2000.
-
(2000)
SIGIR Conference
, pp. 41-48
-
-
Järvelin, K.1
Kekäläinen, J.2
-
8
-
-
0242456822
-
Optimizing search engines using clickthrough data
-
ACM
-
T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD Conference, pages 133-142. ACM, 2002.
-
(2002)
SIGKDD Conference
, pp. 133-142
-
-
Joachims, T.1
-
9
-
-
31844446804
-
A support vector method for multivariate performance measures
-
T. Joachims. A support vector method for multivariate performance measures. In ICML, pages 377-384, 2005.
-
(2005)
ICML
, pp. 377-384
-
-
Joachims, T.1
-
10
-
-
0012435995
-
A probabilistic model of information retrieval: Development and comparative experiments (parts 1 and 2)
-
K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of information retrieval: Development and comparative experiments (parts 1 and 2). Information Processing and Management, 36(6):779-840, 2000.
-
(2000)
Information Processing and Management
, vol.36
, Issue.6
, pp. 779-840
-
-
Jones, K.S.1
Walker, S.2
Robertson, S.E.3
-
12
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Math. Programming, 45(3, (Ser. B)):503-528, 1989.
-
(1989)
Math. Programming
, vol.45
, Issue.3 SER. B
, pp. 503-528
-
-
Liu, D.C.1
Nocedal, J.2
-
14
-
-
65449131941
-
Benchmark dataset for research on learning to rank for information retrieval
-
T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. LETOR: Benchmark dataset for research on learning to rank for information retrieval. In LR4IR Workshop, 2007.
-
(2007)
LR4IR Workshop
-
-
Liu, T.-Y.1
Qin, T.2
Xu, J.3
Xiong, W.4
Letor, H.Li.5
-
17
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6(Sep):1453-1484, 2005.
-
(2005)
JMLR
, vol.6
, Issue.SEP
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
18
-
-
0000448091
-
Support vector method for function approximation, regression estimation, and signal processing
-
MIT Press
-
V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems. MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.J.3
-
19
-
-
71149095619
-
BoltzRank: Learning to maximize expected ranking gain
-
M. N. Volkovs and R. S. Zemel. BoltzRank: Learning to maximize expected ranking gain. In ICML, 2009.
-
(2009)
ICML
-
-
Volkovs, M.N.1
Zemel, R.S.2
-
20
-
-
36448983903
-
A support vector method for optimizing average precision
-
Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR Conference, pages 271-278, 2007.
-
(2007)
SIGIR Conference
, pp. 271-278
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
|