메뉴 건너뛰기




Volumn , Issue , 2009, Pages 129-138

Conditional models for non-smooth ranking loss functions

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY IMPROVEMENT; COMPETITIVE ALGORITHMS; CONDITIONAL MODELS; CONDITIONAL PROBABILITIES; CONVEX APPROXIMATION; DATA SETS; FEATURE VECTORS; GRADIENT-BASED OPTIMIZATION; LEARNING TO RANK; LOSS FUNCTIONS; LOSS MINIMIZATION; MACHINE-LEARNING; MONTE CARLO SAMPLING; NON-SMOOTH; OPTIMIZERS; QUASI-NEWTON; WEB SEARCHES;

EID: 77951190798     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2009.49     Document Type: Conference Paper
Times cited : (4)

References (20)
  • 1
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • A. L. Berger, S. A. D. Pietra, and V. J. D. Pietra. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):3971, 1996.
    • (1996) Computational Linguistics , vol.22 , Issue.1 , pp. 3971
    • Berger, A.L.1    Pietra, S.A.D.2    Pietra, V.J.D.3
  • 4
    • 34547987951 scopus 로고    scopus 로고
    • Learning to rank: From pairwise approach to listwise approach
    • Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: From pairwise approach to listwise approach. In ICML, pages 129-136, 2007.
    • (2007) ICML , pp. 129-136
    • Cao, Z.1    Qin, T.2    Liu, T.-Y.3    Tsai, M.-F.4    Li, H.5
  • 7
    • 0033645041 scopus 로고    scopus 로고
    • IR evaluation methods for retrieving highly relevant documents
    • K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In SIGIR Conference, pages 41-48, 2000.
    • (2000) SIGIR Conference , pp. 41-48
    • Järvelin, K.1    Kekäläinen, J.2
  • 8
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • ACM
    • T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD Conference, pages 133-142. ACM, 2002.
    • (2002) SIGKDD Conference , pp. 133-142
    • Joachims, T.1
  • 9
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • T. Joachims. A support vector method for multivariate performance measures. In ICML, pages 377-384, 2005.
    • (2005) ICML , pp. 377-384
    • Joachims, T.1
  • 10
    • 0012435995 scopus 로고    scopus 로고
    • A probabilistic model of information retrieval: Development and comparative experiments (parts 1 and 2)
    • K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of information retrieval: Development and comparative experiments (parts 1 and 2). Information Processing and Management, 36(6):779-840, 2000.
    • (2000) Information Processing and Management , vol.36 , Issue.6 , pp. 779-840
    • Jones, K.S.1    Walker, S.2    Robertson, S.E.3
  • 12
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Math. Programming, 45(3, (Ser. B)):503-528, 1989.
    • (1989) Math. Programming , vol.45 , Issue.3 SER. B , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 14
    • 65449131941 scopus 로고    scopus 로고
    • Benchmark dataset for research on learning to rank for information retrieval
    • T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. LETOR: Benchmark dataset for research on learning to rank for information retrieval. In LR4IR Workshop, 2007.
    • (2007) LR4IR Workshop
    • Liu, T.-Y.1    Qin, T.2    Xu, J.3    Xiong, W.4    Letor, H.Li.5
  • 17
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6(Sep):1453-1484, 2005.
    • (2005) JMLR , vol.6 , Issue.SEP , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 18
    • 0000448091 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • MIT Press
    • V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems. MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems
    • Vapnik, V.1    Golowich, S.2    Smola, A.J.3
  • 19
    • 71149095619 scopus 로고    scopus 로고
    • BoltzRank: Learning to maximize expected ranking gain
    • M. N. Volkovs and R. S. Zemel. BoltzRank: Learning to maximize expected ranking gain. In ICML, 2009.
    • (2009) ICML
    • Volkovs, M.N.1    Zemel, R.S.2
  • 20
    • 36448983903 scopus 로고    scopus 로고
    • A support vector method for optimizing average precision
    • Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR Conference, pages 271-278, 2007.
    • (2007) SIGIR Conference , pp. 271-278
    • Yue, Y.1    Finley, T.2    Radlinski, F.3    Joachims, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.