메뉴 건너뛰기




Volumn 25, Issue 8, 2010, Pages 919-926

A bootstrap approach to assess parameter uncertainty in simple catchment models

Author keywords

Bayesian inference; Conceptual catchment models; Conceptual rainfall runoff modelling; Model calibration; Parameter calibration

Indexed keywords

AUSTRALIA; AUTOCORRELATED; BAYESIAN; BAYESIAN INFERENCE; BOOTSTRAP APPROACH; CATCHMENT MODELS; CATCHMENT SCALE; CONCEPTUAL MODEL; HYDROLOGICAL MODELS; HYDROLOGICAL PROCESS; MODEL CALIBRATION; MODEL ERRORS; NATURAL RESOURCE MANAGEMENT; NON-PARAMETRIC; NUMERICAL EXPERIMENTS; PARAMETER UNCERTAINTY; RAINFALL-RUNOFF MODELLING;

EID: 77951121542     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2010.03.005     Document Type: Article
Times cited : (29)

References (27)
  • 1
    • 0023523402 scopus 로고
    • Water quality modeling: a review of the analysis of uncertainty
    • Beck M.B. Water quality modeling: a review of the analysis of uncertainty. Water Resources Research 23 8 (1987) 1393-1442
    • (1987) Water Resources Research , vol.23 , Issue.8 , pp. 1393-1442
    • Beck, M.B.1
  • 2
    • 0027009437 scopus 로고
    • The future of distributed models - model calibration and uncertainty prediction
    • Beven K., and Binley A. The future of distributed models - model calibration and uncertainty prediction. Hydrological Processes 6 3 (1992) 279-298
    • (1992) Hydrological Processes , vol.6 , Issue.3 , pp. 279-298
    • Beven, K.1    Binley, A.2
  • 3
    • 0034983025 scopus 로고    scopus 로고
    • Modelling flow and transport in irrigation catchments. 2. Spatial application of subcatchment model
    • Connell L.D., Jayatilaka C.J., and Nathan R. Modelling flow and transport in irrigation catchments. 2. Spatial application of subcatchment model. Water Resources Research 37 (2001) 965-977
    • (2001) Water Resources Research , vol.37 , pp. 965-977
    • Connell, L.D.1    Jayatilaka, C.J.2    Nathan, R.3
  • 4
    • 85086249383 scopus 로고    scopus 로고
    • Representing uncertainty in objective functions: extension to include the influence of serial correlation
    • Croke B.F.W. Representing uncertainty in objective functions: extension to include the influence of serial correlation. Proceedings MODSIM 2009 (2009) 3372-3378
    • (2009) Proceedings MODSIM , vol.2009 , pp. 3372-3378
    • Croke, B.F.W.1
  • 8
    • 33846829888 scopus 로고    scopus 로고
    • Parameter estimation and uncertainty analysis for a watershed model
    • Gallagher M., and Doherty J. Parameter estimation and uncertainty analysis for a watershed model. Environmental Modelling & Software 22 (2007) 1000-1020
    • (2007) Environmental Modelling & Software , vol.22 , pp. 1000-1020
    • Gallagher, M.1    Doherty, J.2
  • 9
    • 77956890307 scopus 로고
    • On blocking rules for the bootstrap with dependent data
    • Hall P., Horowitz J.L., and Jing B.Y. On blocking rules for the bootstrap with dependent data. Biometrika 82 (1995) 561-574
    • (1995) Biometrika , vol.82 , pp. 561-574
    • Hall, P.1    Horowitz, J.L.2    Jing, B.Y.3
  • 11
    • 33748088183 scopus 로고    scopus 로고
    • A Bayesian perspective on input uncertainty in model calibration: application to hydrological model "abc"
    • 10.1029/2005WR004661
    • Huard D., and Mailhot A. A Bayesian perspective on input uncertainty in model calibration: application to hydrological model "abc". Water Resources Research 42 (2006) W07416 10.1029/2005WR004661
    • (2006) Water Resources Research , vol.42
    • Huard, D.1    Mailhot, A.2
  • 12
    • 0027790160 scopus 로고
    • How Much Complexity Is Warranted in a Rainfall-Runoff Model?
    • Jakeman A.J., and Hornberger G.M. How Much Complexity Is Warranted in a Rainfall-Runoff Model?. Water Resources Research 29 8 (1993) 2637-2649
    • (1993) Water Resources Research , vol.29 , Issue.8 , pp. 2637-2649
    • Jakeman, A.J.1    Hornberger, G.M.2
  • 13
  • 14
    • 0020969493 scopus 로고
    • Improved parameter inference in catchment models. 1. Evaluating parameter uncertainty
    • Kuczera G. Improved parameter inference in catchment models. 1. Evaluating parameter uncertainty. Water Resources Research 19 5 (1983) 1151-1162
    • (1983) Water Resources Research , vol.19 , Issue.5 , pp. 1151-1162
    • Kuczera, G.1
  • 15
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm
    • Kuczera G., and Parent E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. Journal of Hydrology 211 1-4 (1998) 69-85
    • (1998) Journal of Hydrology , vol.211 , Issue.1-4 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 16
    • 0000181737 scopus 로고
    • The jackknife and the bootstrap for general stationary observations
    • Künsch H.R. The jackknife and the bootstrap for general stationary observations. The Annuals of Statistics 17 (1989) 1217-1241
    • (1989) The Annuals of Statistics , vol.17 , pp. 1217-1241
    • Künsch, H.R.1
  • 17
    • 0029663871 scopus 로고    scopus 로고
    • A nearest neighbor bootstrap for time series resampling
    • Lall U., and Sharma A. A nearest neighbor bootstrap for time series resampling. Water Resources Research 32 3 (1996) 679-693
    • (1996) Water Resources Research , vol.32 , Issue.3 , pp. 679-693
    • Lall, U.1    Sharma, A.2
  • 18
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part I. A discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of Hydrology 10 (1970) 282-290
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 21
    • 0029660470 scopus 로고    scopus 로고
    • Modeling water retention curves of sandy soils using neural networks
    • Schaap M.G., and Bouten W. Modeling water retention curves of sandy soils using neural networks. Water Resources Research 32 10 (1996) 3033-3040
    • (1996) Water Resources Research , vol.32 , Issue.10 , pp. 3033-3040
    • Schaap, M.G.1    Bouten, W.2
  • 23
    • 28844433295 scopus 로고    scopus 로고
    • Matched block bootstrap for resampling multiseason hydrologic time series
    • Srinivas V.V., and Srinivasan K. Matched block bootstrap for resampling multiseason hydrologic time series. Hydrological Processes 19 (2005) 3659-3682
    • (2005) Hydrological Processes , vol.19 , pp. 3659-3682
    • Srinivas, V.V.1    Srinivasan, K.2
  • 26
    • 34250670714 scopus 로고    scopus 로고
    • Hydrological modelling of the Chaohe Basin in China: statistical model formulation and Bayesian inference
    • Yang J., Reichert P., Abbaspour K.C., and Yang H. Hydrological modelling of the Chaohe Basin in China: statistical model formulation and Bayesian inference. Journal of Hydrology 340 (2007) 167-182
    • (2007) Journal of Hydrology , vol.340 , pp. 167-182
    • Yang, J.1    Reichert, P.2    Abbaspour, K.C.3    Yang, H.4
  • 27
    • 0024607703 scopus 로고
    • Bootstrap confidence intervals for design storms from exceedance series
    • Zucchini W., and Adamson P.T. Bootstrap confidence intervals for design storms from exceedance series. Hydrologicat Sciences Journal 34 (1989) 41-48
    • (1989) Hydrologicat Sciences Journal , vol.34 , pp. 41-48
    • Zucchini, W.1    Adamson, P.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.