메뉴 건너뛰기




Volumn , Issue , 2010, Pages 21-30

Addressing the problems of data-centric physiology-affect relations modeling

Author keywords

Affective computing; Machine learning; Pattern recognition

Indexed keywords

AFFECTIVE COMPUTING; AUTOMATIC FEATURE SELECTION; DATA CENTRIC; DATA SETS; FEATURE COMBINATION; FEATURE SUBSET; FEATURE VECTORS; GIVEN FEATURES; K-NN ALGORITHM; LARGE DATASETS; REGRESSION PROBLEM;

EID: 77951119219     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1719970.1719974     Document Type: Conference Paper
Times cited : (3)

References (48)
  • 1
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching in fixed dimensions
    • Arya, S., Mount D.M., Netanhayu, N.S., Silverman, R. and Wu, A.Y. (1998). An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of the ACM, 45(6):891-923.
    • (1998) Journal of the ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanhayu, N.S.3    Silverman, R.4    Wu, A.Y.5
  • 2
    • 77958027672 scopus 로고    scopus 로고
    • Carnegie Mellon University, Fast EM Clustering Software
    • Auton Lab, School of Computer Science, Carnegie Mellon University, Fast EM Clustering Software. http://www.autonlab.org/autonweb/10466.html?branch= 1&language=2.
    • School of Computer Science
  • 3
    • 0002550768 scopus 로고    scopus 로고
    • Scaling clustering algorithms to large databases
    • Bradley, P.S., Fayyad, U.M. and Reina, C.A. (1998) Scaling clustering algorithms to large databases. 4th KDD 1998, 9-15.
    • (1998) 4th KDD , vol.1998 , pp. 9-15
    • Bradley, P.S.1    Fayyad, U.M.2    Reina, C.A.3
  • 4
    • 33750379261 scopus 로고    scopus 로고
    • Fast and versatile algorithm for nearest neighbor search based on a lower bound tree
    • Chen, Y.-S., Hung, Y.-P., Yen, T.-F. and Fuh, C.-S. (2007). Fast and versatile algorithm for nearest neighbor search based on a lower bound tree. Pattern Recognition, 40(2):360-375.
    • (2007) Pattern Recognition , vol.40 , Issue.2 , pp. 360-375
    • Chen, Y.-S.1    Hung, Y.-P.2    Yen, T.-F.3    Fuh, C.-S.4
  • 5
    • 68149100832 scopus 로고    scopus 로고
    • Empirically building and evaluating a probabilistic model of user affect
    • Conati, C. and Maclaren, H. (2009). Empirically building and evaluating a probabilistic model of user affect. User Modeling and User-Adapted Interaction, 19(3):267-303.
    • (2009) User Modeling and User-Adapted Interaction , vol.19 , Issue.3 , pp. 267-303
    • Conati, C.1    MacLaren, H.2
  • 6
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M. and Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1:131-156.
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 8
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. 2nd KDD 1996, 226-231.
    • (1996) 2nd KDD , vol.1996 , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 10
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Hall, M.A. (2000). Correlation-based feature selection for discrete and numeric class machine learning. ICML 2000, 359-366.
    • (2000) ICML , vol.2000 , pp. 359-366
    • Hall, M.A.1
  • 11
    • 4043059226 scopus 로고    scopus 로고
    • Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper
    • Hall, M.A. and Smith, L.A. (1999) Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. FLAIRS-99, 235-239.
    • (1999) FLAIRS-99 , pp. 235-239
    • Hall, M.A.1    Smith, L.A.2
  • 13
    • 77951133044 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain, A. and Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. Journal of Machine Learning Research, 3:1157-1182.
    • (1997) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Jain, A.1    Zongker, D.2
  • 15
    • 2942731250 scopus 로고    scopus 로고
    • Emotion recognition system using short-term monitoring of physiological signals
    • Kim, K.H., Bang, S.W. and Kim, S.R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42(3):419-427.
    • (2004) Medical and Biological Engineering and Computing , vol.42 , Issue.3 , pp. 419-427
    • Kim, K.H.1    Bang, S.W.2    Kim, S.R.3
  • 16
    • 51849121566 scopus 로고    scopus 로고
    • An empathy learning problem for HSI: To be empathic, self-improving and ambient
    • Legaspi, R., Kurihara, S., Fukui, K.-I., Moriyama, K. and Numao, M. (2008) An empathy learning problem for HSI: To be empathic, self-improving and ambient. HSI, 209-214.
    • (2008) HSI , pp. 209-214
    • Legaspi, R.1    Kurihara, S.2    Fukui, K.-I.3    Moriyama, K.4    Numao, M.5
  • 17
    • 51949119629 scopus 로고    scopus 로고
    • Feature Selection for Data Mining
    • Arizona State University
    • Liu H. and Yu, L. (2002). Feature Selection for Data Mining. Research Technical Report, Arizona State University.
    • (2002) Research Technical Report
    • Liu, H.1    Yu, L.2
  • 18
    • 33745369515 scopus 로고    scopus 로고
    • New algorithms for efficient high-dimensional nonparametric classification
    • Liu, T., Moore, A.W. and Gray, A. (2006). New algorithms for efficient high-dimensional nonparametric classification. The Journal of Machine Learning Research, 1135-1158.
    • (2006) The Journal of Machine Learning Research , pp. 1135-1158
    • Liu, T.1    Moore, A.W.2    Gray, A.3
  • 19
    • 33745200865 scopus 로고    scopus 로고
    • An investigation of practical approximate nearest neighbor algorithms
    • Liu, T., Moore, A.W., Gray, A. and Yang, K. (2004). An investigation of practical approximate nearest neighbor algorithms. NIPS 2004.
    • (2004) NIPS 2004
    • Liu, T.1    Moore, A.W.2    Gray, A.3    Yang, K.4
  • 20
    • 0034111977 scopus 로고    scopus 로고
    • A short daytime nap modulates levels of emotions objectively evaluated by the emotion spectrum analysis method
    • Luo, Z. and Inoue, S. (2000). A short daytime nap modulates levels of emotions objectively evaluated by the emotion spectrum analysis method. Psychiatry and Clinical Neurosciences, 54:207-212.
    • (2000) Psychiatry and Clinical Neurosciences , vol.54 , pp. 207-212
    • Luo, Z.1    Inoue, S.2
  • 21
    • 78149355539 scopus 로고    scopus 로고
    • Feature selection algorithms: A survey and experimental evaluation
    • Molina, L.C., Belanche, L. and Nebot, À. (2002). Feature selection algorithms: A survey and experimental evaluation. ICDM 2002, 306-313.
    • (2002) ICDM , vol.2002 , pp. 306-313
    • Molina, L.C.1    Belanche, L.2    Nebot, À.3
  • 23
    • 70349675925 scopus 로고    scopus 로고
    • Fast approximate nearest neighbors with automatic algorithm configuration
    • Muja, M. and Lowe, D.G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP 2009.
    • (2009) VISAPP 2009
    • Muja, M.1    Lowe, D.G.2
  • 24
    • 0033947875 scopus 로고    scopus 로고
    • Emotion spectrum analysis method (ESAM) for monitoring the effects of art therapy applied on demented patients
    • Musha, T., Kimura, S., Kaneko, K.-I., Nishida, K. and Sekine, K. (2000). Emotion spectrum analysis method (ESAM) for monitoring the effects of art therapy applied on demented patients. CyberPsychology and Behavior, 3(3):441-446.
    • (2000) CyberPsychology and Behavior , vol.3 , Issue.3 , pp. 441-446
    • Musha, T.1    Kimura, S.2    Kaneko, K.-I.3    Nishida, K.4    Sekine, K.5
  • 26
    • 27144489770 scopus 로고    scopus 로고
    • Emotion recognition from physiological signals using wireless sensors for presence technologies
    • Nasoz, F., Alvarez, K., Lisetti, C.L. and Finkelstein, N. (2004). Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology, and Work, 6:4-14.
    • (2004) Cognition, Technology, and Work , vol.6 , pp. 4-14
    • Nasoz, F.1    Alvarez, K.2    Lisetti, C.L.3    Finkelstein, N.4
  • 29
    • 34047114777 scopus 로고    scopus 로고
    • Symmetric multimodality revisited: Unveiling user's physiological activity
    • Prendinger, H. and Ishizuka, M. (2007). Symmetric multimodality revisited: Unveiling user's physiological activity. IEEE Transactions on Industrial Electronics, 54(2):692-698.
    • (2007) IEEE Transactions on Industrial Electronics , vol.54 , Issue.2 , pp. 692-698
    • Prendinger, H.1    Ishizuka, M.2
  • 32
    • 34047112206 scopus 로고    scopus 로고
    • A fast all nearest neighbor algorithm for applications involving large point-clouds
    • Sankaranarayanan, J., Samet, H. and Varshney, A. (2007). A fast all nearest neighbor algorithm for applications involving large point-clouds. Computer & Graphics, 31:157-174.
    • (2007) Computer & Graphics , vol.31 , pp. 157-174
    • Sankaranarayanan, J.1    Samet, H.2    Varshney, A.3
  • 33
    • 33745948918 scopus 로고    scopus 로고
    • Empathic painting: Interactive stylization through observed emotional state
    • Shugrina, M., Betke, M. and Collomosse, J.P. (2006). Empathic painting: Interactive stylization through observed emotional state. NPAR 2006, 87-96.
    • (2006) NPAR , vol.2006 , pp. 87-96
    • Shugrina, M.1    Betke, M.2    Collomosse, J.P.3
  • 34
    • 40249100870 scopus 로고    scopus 로고
    • Modelling affective-based music compositional intelligence with the aid of ANS analyses
    • Sugimoto, T., Legaspi, R., Ota, A., Moriyama, K. and Numao, M. (2008). Modelling affective-based music compositional intelligence with the aid of ANS analyses. Knowledge Based Systems, 21(3):200-2008.
    • (2008) Knowledge Based Systems , vol.21 , Issue.3 , pp. 200-2008
    • Sugimoto, T.1    Legaspi, R.2    Ota, A.3    Moriyama, K.4    Numao, M.5
  • 36
    • 77951136847 scopus 로고    scopus 로고
    • Dimensional structure of emotional facial expression recognition and complex system
    • Takehara, T. (2007). Dimensional structure of emotional facial expression recognition and complex system. Focus on Nonverbal Communication Research, 65-88.
    • (2007) Focus on Nonverbal Communication Research , pp. 65-88
    • Takehara, T.1
  • 38
    • 23044525572 scopus 로고    scopus 로고
    • Scaling Kernel-based systems to large data sets
    • Tresp, V. (2001). Scaling kernel-based systems to large datasets. Data Mining and Knowledge Discovery, 5:197-211. (Pubitemid 33750366)
    • (2001) Data Mining and Knowledge Discovery , vol.5 , Issue.3 , pp. 197-211
    • Tresp, V.1
  • 39
    • 78649312446 scopus 로고    scopus 로고
    • Simpler core vector machines with enclosing balls
    • Tsang, I.W., Kocsor, A. and Kwok, J.T. (2007). Simpler core vector machines with enclosing balls. ICML 2007, 911-918.
    • (2007) ICML , vol.2007 , pp. 911-918
    • Tsang, I.W.1    Kocsor, A.2    Kwok, J.T.3
  • 41
    • 33749572603 scopus 로고    scopus 로고
    • From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification
    • Wagner, J., Kim, J. and André, E. (2005). From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification. ICME 2005, 940-943.
    • (2005) ICME , vol.2005 , pp. 940-943
    • Wagner, J.1    Kim, J.2    André, E.3
  • 42
    • 77951122135 scopus 로고    scopus 로고
    • Alpha rhythm dipolarity: An index in quantitative prediction of degree of Alzheimer's disease
    • Wei, D., Musha, T., Ono, S., Shimizu, N., Hara, J. and Shankle, W. (1999). Alpha rhythm dipolarity: An index in quantitative prediction of degree of Alzheimer's disease. 38th JSMEBE.
    • (1999) 38th JSMEBE
    • Wei, D.1    Musha, T.2    Ono, S.3    Shimizu, N.4    Hara, J.5    Shankle, W.6
  • 43
    • 33144483696 scopus 로고    scopus 로고
    • Continuous electronic data capture of physiology, behavior and experience in real life: Towards ecological momentary assessment of emotion
    • Wilhelm, F.H., Pfaltz, M.C. and Grossman, P. (2006). Continuous electronic data capture of physiology, behavior and experience in real life: Towards ecological momentary assessment of emotion. Interacting with Computers, 18(2):171-186.
    • (2006) Interacting with Computers , vol.18 , Issue.2 , pp. 171-186
    • Wilhelm, F.H.1    Pfaltz, M.C.2    Grossman, P.3
  • 44
    • 84862156369 scopus 로고    scopus 로고
    • Abandoning emotion classes - Towards continuous emotion recognition with modelling of long-range dependencies. 9th Interspeech 2008
    • Wöllmer, M., Eyben, F., Reiter, S., Schuller, B., Cox, C., Douglas-Cowie, E. and Cowie, R. (2008). Abandoning emotion classes - Towards continuous emotion recognition with modelling of long-range dependencies. 9th Interspeech 2008, Incorporating SST 2008, 597-600.
    • (2008) Incorporating SST , vol.2008 , pp. 597-600
    • Wöllmer, M.1    Eyben, F.2    Reiter, S.3    Schuller, B.4    Cox, C.5    Douglas-Cowie, E.6    Cowie, R.7
  • 47
    • 67649160691 scopus 로고    scopus 로고
    • Masters Thesis, Dept. of Computer Science and Software Engineering, University of Canterbury.
    • Zakharov, K. (2007). Affect recognition and support in intelligent tutoring systems. Masters Thesis, Dept. of Computer Science and Software Engineering, University of Canterbury. http://www.cosc.canterbury.ac.nz/ research/reports/Mast Theses/2007/mast-0708.pdf
    • (2007) Affect Recognition and Support in Intelligent Tutoring Systems
    • Zakharov, K.1
  • 48
    • 50849112055 scopus 로고    scopus 로고
    • Emotions evoked by the sound of music: Characterization, classification and measurement
    • Zentner, M., Grandjean, D. and Scherer, K.R. (2008). Emotions evoked by the sound of music: Characterization, classification and measurement. Emotion, 8(4):494-521.
    • (2008) Emotion , vol.8 , Issue.4 , pp. 494-521
    • Zentner, M.1    Grandjean, D.2    Scherer, K.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.