|
Volumn 48, Issue 3, 2010, Pages 626-632
|
Prediction of the hot deformation behavior for Aermet100 steel using an artificial neural network
|
Author keywords
Aermet100 steel; Artificial neural network; Hot deformation; Learning algorithm
|
Indexed keywords
ARTIFICIAL NEURAL NETWORK;
ARTIFICIAL NEURAL NETWORK MODELS;
EXPERIMENTAL DATA;
FEEDFORWARD BACKPROPAGATION;
FLOW STRESS;
HOT COMPRESSION TESTS;
HOT DEFORMATION;
HOT DEFORMATION BEHAVIORS;
LEVENBERG-MARQUARDT LEARNING ALGORITHMS;
NOISE SENSITIVITY;
NOISE TOLERANCE;
STATISTICAL INDICES;
STRAIN RANGES;
TEMPERATURE RANGE;
ULTRA HIGH STRENGTH STEEL;
APPROXIMATION THEORY;
BACKPROPAGATION ALGORITHMS;
COMPRESSION TESTING;
DAMAGE DETECTION;
DATA FLOW ANALYSIS;
DEFORMATION;
EXTRAPOLATION;
FORECASTING;
HIGH STRENGTH STEEL;
LEARNING ALGORITHMS;
STRAIN RATE;
NEURAL NETWORKS;
|
EID: 77950948552
PISSN: 09270256
EISSN: None
Source Type: Journal
DOI: 10.1016/j.commatsci.2010.02.031 Document Type: Article |
Times cited : (69)
|
References (15)
|