메뉴 건너뛰기




Volumn 129, Issue 2, 2007, Pages 242-247

Capability of a feed-forward artificial neural network to predict the constitutive flow behavior of as cast 304 stainless steel under hot deformation

Author keywords

Artificial neural network; Constitutive flow behavior; Extrapolation; Hot deformation; Learning algorithms; Stainless steel

Indexed keywords

COMPRESSION TESTING; CONSTITUTIVE MODELS; EXTRAPOLATION; HOT WORKING; LEARNING ALGORITHMS; PLASTIC FLOW; STAINLESS STEEL; STRAIN RATE;

EID: 34249890553     PISSN: 00944289     EISSN: None     Source Type: Journal    
DOI: 10.1115/1.2400276     Document Type: Article
Times cited : (34)

References (24)
  • 1
    • 0348107533 scopus 로고
    • Dislocation-Mechanics- Based Constitutive Relations for Materials Dynamic Calculations
    • Zerilli, F. J., and Armstrong, R. M., 1987, "Dislocation-Mechanics- Based Constitutive Relations for Materials Dynamic Calculations," J. Appl. Phys., 61, pp. 1816-1825.
    • (1987) J. Appl. Phys , vol.61 , pp. 1816-1825
    • Zerilli, F.J.1    Armstrong, R.M.2
  • 2
    • 0023862814 scopus 로고
    • A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable
    • Follansbee, P. S., and Kocks, U. F., 1988, "A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable," Acta Metall., 36, pp. 81-93.
    • (1988) Acta Metall , vol.36 , pp. 81-93
    • Follansbee, P.S.1    Kocks, U.F.2
  • 3
    • 0026747220 scopus 로고
    • Assessment of Simple Flow Stress Relationships Using Literature Data for a Range of Steels
    • Rao, K. P., and Hawbolt, E. B., 1992, "Assessment of Simple Flow Stress Relationships Using Literature Data for a Range of Steels," J. Mater. Process. Technol., 29, pp. 15-40.
    • (1992) J. Mater. Process. Technol , vol.29 , pp. 15-40
    • Rao, K.P.1    Hawbolt, E.B.2
  • 4
    • 0002266027 scopus 로고
    • Approximate Analysis of Structures in the Presence of Moderately Large Steps Deformation
    • Hoff, N. J., 1954, "Approximate Analysis of Structures in the Presence of Moderately Large Steps Deformation," Q. Appl. Math., 2, pp. 49.
    • (1954) Q. Appl. Math , vol.2 , pp. 49
    • Hoff, N.J.1
  • 5
    • 0026622732 scopus 로고
    • Development of Constitutive Relationships Using Compression Testing of a Medium Carbon Steel
    • Rao, K. P., and Hawbolt, E. B., 1992, "Development of Constitutive Relationships Using Compression Testing of a Medium Carbon Steel," ASME J. Eng. Mater. Technol., 114, pp. 116-123.
    • (1992) ASME J. Eng. Mater. Technol , vol.114 , pp. 116-123
    • Rao, K.P.1    Hawbolt, E.B.2
  • 6
    • 0029705256 scopus 로고    scopus 로고
    • Modelling Flow Stress Evolution During Elevated Temperature Deformation of Two Low Carbon Steels
    • Anderson, J. G., and Evans, R. W., 1996. "Modelling Flow Stress Evolution During Elevated Temperature Deformation of Two Low Carbon Steels," Ironmaking Steelmaking, 23, pp. 130-135.
    • (1996) Ironmaking Steelmaking , vol.23 , pp. 130-135
    • Anderson, J.G.1    Evans, R.W.2
  • 7
    • 0029371166 scopus 로고
    • Neural Network Approach to Flow Stress Evaluation in Hot Deformation
    • Rao, K. P., and Prasad, Y. K. D. V., 1995, "Neural Network Approach to Flow Stress Evaluation in Hot Deformation," J. Mater. Process. Technol., 53, pp. 552-566.
    • (1995) J. Mater. Process. Technol , vol.53 , pp. 552-566
    • Rao, K.P.1    Prasad, Y.K.D.V.2
  • 8
    • 12344263947 scopus 로고    scopus 로고
    • Hindcasting of Storm Waves Using Neural Networks
    • Rao, S., and Mandal, S., 2005, "Hindcasting of Storm Waves Using Neural Networks," Ocean Eng., 32, pp. 667-684.
    • (2005) Ocean Eng , vol.32 , pp. 667-684
    • Rao, S.1    Mandal, S.2
  • 9
    • 0032022579 scopus 로고    scopus 로고
    • A Comparison Between the Back-propagation and Counter-Propagation Networks in the Modeling of the TIG Welding Process
    • Juang, S. C., Tarng, Y. S., and Lii, H. R., 1998, "A Comparison Between the Back-propagation and Counter-Propagation Networks in the Modeling of the TIG Welding Process," J. Mater. Process. Technol., 75, pp. 54-62.
    • (1998) J. Mater. Process. Technol , vol.75 , pp. 54-62
    • Juang, S.C.1    Tarng, Y.S.2    Lii, H.R.3
  • 10
    • 26444494069 scopus 로고    scopus 로고
    • Use of Artificial Neural Networks to Predict the Deformation Behavior of Zr-2.5Nb-0.5Cu
    • Kapoor, R., Pal, D., and Chakravartty, J. K., 2005, "Use of Artificial Neural Networks to Predict the Deformation Behavior of Zr-2.5Nb-0.5Cu," J. Mater. Process. Technol., 169, pp. 199-205.
    • (2005) J. Mater. Process. Technol , vol.169 , pp. 199-205
    • Kapoor, R.1    Pal, D.2    Chakravartty, J.K.3
  • 11
    • 34249869387 scopus 로고
    • Processing Map for Hot Working of As Cast Stainless Steel Type AISI 304
    • Venugopal, S., Mannan, S. L., and Prasad, Y. V. R. K., 1993, "Processing Map for Hot Working of As Cast Stainless Steel Type AISI 304," Met., Mater. Processes, 5, pp. 1-12.
    • (1993) Met., Mater. Processes , vol.5 , pp. 1-12
    • Venugopal, S.1    Mannan, S.L.2    Prasad, Y.V.R.K.3
  • 12
    • 84943274699 scopus 로고
    • A Direct Adaptive Method for Faster Back Propagation Learning: The RPROP Algorithm
    • San Francisco, California, pp
    • Reidmiller, M., and Braun, H., 1993, "A Direct Adaptive Method for Faster Back Propagation Learning: The RPROP Algorithm," Proceedings International Conference in Neural Networks, San Francisco, California, pp. 586-591.
    • (1993) Proceedings International Conference in Neural Networks , pp. 586-591
    • Reidmiller, M.1    Braun, H.2
  • 13
    • 15844401040 scopus 로고    scopus 로고
    • New Globally Convergent Training Scheme Based on the Resilient Propagation Algorithm
    • Anastaiadis, A. D., Magoulas, G. D., and Vrahatis, M. N., 2005, "New Globally Convergent Training Scheme Based on the Resilient Propagation Algorithm," Neurocomputing, 64, pp. 253-270.
    • (2005) Neurocomputing , vol.64 , pp. 253-270
    • Anastaiadis, A.D.1    Magoulas, G.D.2    Vrahatis, M.N.3
  • 14
    • 0025593679 scopus 로고
    • SuperSAB: Fast Adaptive Back Propagation with Good Scaling Properties
    • Tollenaere, T., 1990, "SuperSAB: Fast Adaptive Back Propagation with Good Scaling Properties," Neural Networks, 3, pp. 561-573.
    • (1990) Neural Networks , vol.3 , pp. 561-573
    • Tollenaere, T.1
  • 15
    • 0041691046 scopus 로고    scopus 로고
    • The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steel
    • Phaniraj, M. P., and Lahiri, A. K., 2003, "The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steel," J. Mater. Process. Technol., 141, pp. 219-227.
    • (2003) J. Mater. Process. Technol , vol.141 , pp. 219-227
    • Phaniraj, M.P.1    Lahiri, A.K.2
  • 16
    • 33644636765 scopus 로고    scopus 로고
    • A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Models
    • Srinivasulu, S., and Jain, A., 2006, "A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Models," Appl. Soft Computing, 6, pp. 295-306.
    • (2006) Appl. Soft Computing , vol.6 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 17
    • 0002342092 scopus 로고    scopus 로고
    • Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior
    • Ponge, D., and Gottstein, G., 1998, "Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior," Acta Mater., 46, pp. 69-80.
    • (1998) Acta Mater , vol.46 , pp. 69-80
    • Ponge, D.1    Gottstein, G.2
  • 18
    • 0032058295 scopus 로고    scopus 로고
    • Nucleation Mechanism of Dynamic Recrystallization in Austenitic Stainless Steel Alloy 800H
    • Brunger, E., Wang, X., and Gottstein, G., 1998, "Nucleation Mechanism of Dynamic Recrystallization in Austenitic Stainless Steel Alloy 800H," Scr. Mater., 38, pp. 1843-1849.
    • (1998) Scr. Mater , vol.38 , pp. 1843-1849
    • Brunger, E.1    Wang, X.2    Gottstein, G.3
  • 19
    • 34249873375 scopus 로고    scopus 로고
    • Kinetic, Mechanism and Modeling of Microstructural Evolution During Thermomechanical Processing of a 15Cr-15Ni-2.2Mo-Ti Modified Austenitic Stainless Steel
    • in press
    • Mandal, S., Sivaprasad, P. V., and Dube, R. K., 2005, "Kinetic, Mechanism and Modeling of Microstructural Evolution During Thermomechanical Processing of a 15Cr-15Ni-2.2Mo-Ti Modified Austenitic Stainless Steel," J. Mater. Sci., in press.
    • (2005) J. Mater. Sci
    • Mandal, S.1    Sivaprasad, P.V.2    Dube, R.K.3
  • 20
    • 0348107289 scopus 로고    scopus 로고
    • Application of Artificial Neural Networks for Modelling Correlation in Titanium Alloys
    • Malinov, S., and Sha, W., 2004, "Application of Artificial Neural Networks for Modelling Correlation in Titanium Alloys," Mater. Sci. Eng., A, 365, pp. 202-211.
    • (2004) Mater. Sci. Eng., A , vol.365 , pp. 202-211
    • Malinov, S.1    Sha, W.2
  • 21
    • 0043286836 scopus 로고    scopus 로고
    • Artificial Neural Networks to Polymer Composites: A Review
    • Zhang, Z., and Friedrich, K., 2003, "Artificial Neural Networks to Polymer Composites: A Review," Compos. Sci. Technol., 63, pp. 2029-2044.
    • (2003) Compos. Sci. Technol , vol.63 , pp. 2029-2044
    • Zhang, Z.1    Friedrich, K.2
  • 23
    • 33746894601 scopus 로고    scopus 로고
    • Constitutive Flow Behavior of Austenitic Stainless Steels Under Hot Deformation: Artificial Neural Network Modeling to Understand, Evaluate and Predict
    • Mandal, S., Sivaprasad, P. V., Venugopal, S., and Murthy, K. P. N., 2006, "Constitutive Flow Behavior of Austenitic Stainless Steels Under Hot Deformation: Artificial Neural Network Modeling to Understand, Evaluate and Predict," Modell. Simul. Mater. Sci. Eng., 14, pp. 1053-1070.
    • (2006) Modell. Simul. Mater. Sci. Eng , vol.14 , pp. 1053-1070
    • Mandal, S.1    Sivaprasad, P.V.2    Venugopal, S.3    Murthy, K.P.N.4
  • 24
    • 0033078679 scopus 로고    scopus 로고
    • Using Neural Networks to Predict Parameters in the Hot Working of Aluminum Alloys
    • Chuan, M. S., Biglou, J., Lenard, J. G., and Kim, J. G., 1999, "Using Neural Networks to Predict Parameters in the Hot Working of Aluminum Alloys," J. Mater. Process. Technol., 86, pp. 245-251.
    • (1999) J. Mater. Process. Technol , vol.86 , pp. 245-251
    • Chuan, M.S.1    Biglou, J.2    Lenard, J.G.3    Kim, J.G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.