메뉴 건너뛰기




Volumn 28, Issue 3, 2009, Pages 327-364

On the use of the spectral projected gradient method for support vector machines

Author keywords

Quadratic programming; Spectral projected gradient method; Support vector machines

Indexed keywords

CONSTRAINED OPTIMIZATION; GRADIENT METHODS; SUPPORT VECTOR MACHINES;

EID: 77950826983     PISSN: 22383603     EISSN: 18070302     Source Type: Journal    
DOI: 10.1590/S1807-03022009000300005     Document Type: Article
Times cited : (7)

References (41)
  • 1
    • 77950816012 scopus 로고    scopus 로고
    • Neural Information Processing Systems (NIPS) Conference: Feature Selection Challenge
    • Neural Information Processing Systems (NIPS) Conference: Feature Selection Challenge, 2003. http://www.nipsfsc.ecs.soton.ac.uk/datasets/.
    • (2003)
  • 2
    • 77950787389 scopus 로고    scopus 로고
    • IEEE World Congress on Computational Intelligence: Performance Prediction Challenge
    • IEEE World Congress on Computational Intelligence: Performance Prediction Challenge, 2006. http://www.modelselect.inf.ethz.ch/.
    • (2006)
  • 5
    • 0034345420 scopus 로고    scopus 로고
    • Nonmonotone spectral projected gradient methods on convex sets
    • E.G. Birgin, J.M. Martínez and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal on Optimization, 10 (2000), 1196-1211.
    • (2000) SIAM Journal on Optimization , vol.10 , pp. 1196-1211
    • Birgin, E.G.1    Martínez, J.M.2    Raydan, M.3
  • 6
    • 84902205493 scopus 로고    scopus 로고
    • Comparison of view-based object recognition algorithms using realistic 3d models
    • J.C. Vorbrüggen, C. von der Malsburg, W. von Seelen and B. Sendhoff, editors, ICIANN'96, Berlin 1996. Springer Lecture Notes in Computer Science
    • V. Blanz, B. Schölkopf, H. Bülthoffand, C. Burges, V.N. Vapnik and T. Vetter, Comparison of view-based object recognition algorithms using realistic 3d models. In: J.C. Vorbrüggen, C. von der Malsburg, W. von Seelen and B. Sendhoff, editors, Artificial Neural Networks, ICIANN'96, pages 251-256, Berlin 1996. Springer Lecture Notes in Computer Science, 1112 (1996).
    • (1996) Artificial Neural Networks , vol.1112 , pp. 251-256
    • Blanz, V.1    Schölkopf, B.2    Bülthoffand, H.3    Burges, C.4    Vapnik, V.N.5    Vetter, T.6
  • 8
    • 0002436271 scopus 로고
    • A method for finding projections onto the intersections of convex sets in Hilbert spaces
    • J.P. Boyle and R.L. Dykstra, A method for finding projections onto the intersections of convex sets in Hilbert spaces. Lecture Notes in Statistics, 37 (1986), 28-47.
    • (1986) Lecture Notes in Statistics , vol.37 , pp. 28-47
    • Boyle, J.P.1    Dykstra, R.L.2
  • 9
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • U. Fayyad, editor, Kluwer Academic Publishers, Netherlands
    • C.J.C. Burges, A tutorial on support vector machines for pattern recognition. In: U. Fayyad, editor, Data Mining on Knowledge Discovery, pages 121-167. Kluwer Academic Publishers, Netherlands (1998).
    • (1998) Data Mining on Knowledge Discovery , pp. 121-167
    • Burges, C.J.C.1
  • 10
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector machines
    • M. Jordan M. Mozer and T. Petsche, editors, MIT Press, Cambridge, MA
    • C.J.C. Burges and B. Schölkopf, Improving the accuracy and speed of support vector machines. In: M. Jordan M. Mozer and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 375-381. MIT Press, Cambridge, MA (1997).
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 375-381
    • Burges, C.J.C.1    Schölkopf, B.2
  • 12
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, Support vector networks. Machine Learning, 20 (1995), 1-25.
    • (1995) Machine Learning , vol.20 , pp. 1-25
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 33644511085 scopus 로고    scopus 로고
    • New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds
    • Y.H. Dai and R. Fletcher, New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Math. Program., 106 (2006), 403-421.
    • (2006) Math. Program. , vol.106 , pp. 403-421
    • Dai, Y.H.1    Fletcher, R.2
  • 16
    • 84948499836 scopus 로고
    • An algorithm for restricted least-squares regression
    • R.L. Dykstra, An algorithm for restricted least-squares regression. J. Amer. Stat. Assoc., 78 (1983), 837-842.
    • (1983) J. Amer. Stat. Assoc. , vol.78 , pp. 837-842
    • Dykstra, R.L.1
  • 17
    • 21444443737 scopus 로고    scopus 로고
    • Dykstra's algorithm for a constrained least-squares matrix problem
    • R. Escalante and M. Raydan, Dykstra's algorithm for a constrained least-squares matrix problem. Num. Linear Algebra Appl., 3(6) (1996), 459-471.
    • (1996) Num. Linear Algebra Appl. , vol.3 , Issue.6 , pp. 459-471
    • Escalante, R.1    Raydan, M.2
  • 18
    • 0032020828 scopus 로고    scopus 로고
    • Dykstra's algorithm for constrained least-squares rectangular matrix problems
    • R. Escalante and M. Raydan, Dykstra's algorithm for constrained least-squares rectangular matrix problems. Computers Math. Applic., 35(6) (1998), 73-79.
    • (1998) Computers Math. Applic. , vol.35 , Issue.6 , pp. 73-79
    • Escalante, R.1    Raydan, M.2
  • 19
    • 0041657519 scopus 로고    scopus 로고
    • Interior-point methods for massive support vector machines
    • M. Ferris and T. Munson, Interior-point methods for massive support vector machines. SIAM Journal on Optimization, 13(3) (2003), 783-804.
    • (2003) SIAM Journal on Optimization , vol.13 , Issue.3 , pp. 783-804
    • Ferris, M.1    Munson, T.2
  • 20
    • 0002824920 scopus 로고    scopus 로고
    • Global convergence properties of conjugate gradient methods for optimization
    • J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim., 2, 21-42.
    • SIAM J. Optim. , vol.2 , pp. 21-42
    • Gilbert, J.C.1    Nocedal, J.2
  • 21
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • R.P. Gorman and T.J. Sejnowski, Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks, 1 (1988), 75-89.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 22
    • 0023860607 scopus 로고
    • A successive projection method
    • S.P. Han, A successive projection method. Math. Program, 40 (1988), 1-14.
    • (1988) Math. Program , vol.40 , pp. 1-14
    • Han, S.P.1
  • 24
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • C. Nédellec and C. Rouveirol, editors, Springer, April
    • T. Joachims, Text categorization with support vector machines: Learning with many relevant features. In: C. Nédellec and C. Rouveirol, editors, Proceedings of the 10th European Conference on Machine Learning (ECML-98), pages 137-142. Springer, April 1998.
    • (1998) Proceedings of the 10th European Conference on Machine Learning (ECML-98) , pp. 137-142
    • Joachims, T.1
  • 25
    • 77950791750 scopus 로고
    • Solution of large-scale separable strictly convex quadratic programs on the simplex
    • J.J. Júdice and F.M. Pires, Solution of large-scale separable strictly convex quadratic programs on the simplex. Linear Algebra and its applications, (1989), 215-220.
    • (1989) Linear Algebra and its applications , pp. 215-220
    • Júdice, J.J.1    Pires, F.M.2
  • 27
    • 0003425662 scopus 로고    scopus 로고
    • Technical Report A.I. Memo No. 1602, C.B.C.L. Paper No. 144, Massachusetts Institute of Technology, Cambridge, MA, USA
    • E.E. Osuna, R. Freund and F. Girosi, Support Vector Machines: Training and Applications. Technical Report A.I. Memo No. 1602, C.B.C.L. Paper No. 144, Massachusetts Institute of Technology, Cambridge, MA, USA (1997).
    • (1997) Support Vector Machines: Training and Applications
    • Osuna, E.E.1    Freund, R.2    Girosi, F.3
  • 29
    • 77950850124 scopus 로고    scopus 로고
    • An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
    • P.M. Pardalos and N. Kovoor, An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Mathematical Programming, 46.
    • Mathematical Programming , pp. 46
    • Pardalos, P.M.1    Kovoor, N.2
  • 30
    • 0031542191 scopus 로고    scopus 로고
    • The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem
    • M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Opt., 7 (1997), 26-33.
    • (1997) SIAM J. Opt. , vol.7 , pp. 26-33
    • Raydan, M.1
  • 31
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification (with discussion)
    • B.D. Riply, Neural networks and related methods for classification (with discussion). J. Royal Statistical Soc. Series B, 56 (1994), 409-456.
    • (1994) J. Royal Statistical Soc. Series B , vol.56 , pp. 409-456
    • Riply, B.D.1
  • 32
    • 0004545635 scopus 로고    scopus 로고
    • Identifying speaker with support vector networks
    • Sydney, Australia
    • M. Schmidt, Identifying speaker with support vector networks. In: Interface'96 Proceedings. Sydney, Australia (1996).
    • (1996) Interface'96 Proceedings
    • Schmidt, M.1
  • 34
    • 84902142380 scopus 로고    scopus 로고
    • Incorporating invariances in support vector learning machines
    • J.C. Vorbrüuggen C. von der Malsburg, W. von Seelen and B. Sendhoff, editors, ICIANN'96, Berlin 1996. Springer Lecture Notes in Computer Science
    • B. Schölkopf, C. Burges and V.N. Vapnik, Incorporating invariances in support vector learning machines. In: J.C. Vorbrüuggen C. von der Malsburg, W. von Seelen and B. Sendhoff, editors, Artificial Neural Networks, ICIANN'96, pages 47-52, Berlin 1996. Springer Lecture Notes in Computer Science, 1112 (1996).
    • (1996) Artificial Neural Networks , vol.1112 , pp. 47-52
    • Schölkopf, B.1    Burges, C.2    Vapnik, V.N.3
  • 35
    • 12444278992 scopus 로고    scopus 로고
    • Gradient projection methods for quadratic programs and applications in training support vector machines
    • T. Serafini, G. Zanghirati and L. Zanni, Gradient projection methods for quadratic programs and applications in training support vector machines. Optimization Methods and Software, 20 (2003), 353-378.
    • (2003) Optimization Methods and Software , vol.20 , pp. 353-378
    • Serafini, T.1    Zanghirati, G.2    Zanni, L.3
  • 36
    • 84976806770 scopus 로고
    • Remark on algorithm 500: Minimization of unconstrained multivariate functions
    • D.F. Shanno and K.H. Phua, Remark on algorithm 500: Minimization of unconstrained multivariate functions. ACM Trans. Math. Software, 6 (1980), 618-622.
    • (1980) ACM Trans. Math. Software , vol.6 , pp. 618-622
    • Shanno, D.F.1    Phua, K.H.2
  • 37
    • 0003433589 scopus 로고
    • Technical Report A.I. Memo No. 1521, C.B.C.L. Paper No. 112, Massachusetts Institute of Technology, Cambridge, MA, USA
    • K. Sung and T. Poggio, Example-based learning for view-based human face detection. Technical Report A.I. Memo No. 1521, C.B.C.L. Paper No. 112, Massachusetts Institute of Technology, Cambridge, MA, USA (1994).
    • (1994) Example-based learning for view-based human face detection
    • Sung, K.1    Poggio, T.2
  • 39
    • 0010995157 scopus 로고
    • Functional operators, Vol. II. The geometry of orthogonal spaces
    • Princeton University Press
    • J. von Neumann, Functional operators, Vol. II. The geometry of orthogonal spaces. Annals of Math. Studies, 22 (1950). Princeton University Press.
    • (1950) Annals of Math. Studies , vol.22
    • von Neumann, J.1
  • 41
    • 33745784205 scopus 로고    scopus 로고
    • Parallel software for training large scale support vector machines on multiprocessor systems
    • L. Zanni, T. Serafini and G. Zanghirati, Parallel software for training large scale support vector machines on multiprocessor systems. Journal of Machine Learning Research, 7 (2006), 1467-1492.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1467-1492
    • Zanni, L.1    Serafini, T.2    Zanghirati, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.