메뉴 건너뛰기




Volumn 25, Issue 1, 2010, Pages 245-252

Virtual models for prediction of wind turbine parameters

Author keywords

Data mining; Parameter selection; Power prediction; Virtual model; Wind turbine

Indexed keywords

COMPUTATIONAL RESULTS; DATA MINING ALGORITHM; DATA-DRIVEN; DELAY EFFECTS; INPUT PARAMETER; MODEL EXTRACTION; PARAMETER SELECTION; POWER OUT PUT; POWER PREDICTION; TRAINING SETS; TWO PARAMETER; VIRTUAL MODEL; VIRTUAL MODELS; WIND FARM; WIND SPEED;

EID: 77950690887     PISSN: 08858969     EISSN: None     Source Type: Journal    
DOI: 10.1109/TEC.2009.2033042     Document Type: Article
Times cited : (48)

References (28)
  • 2
    • 33845579904 scopus 로고    scopus 로고
    • Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization
    • B. Boukhezzar, H. Siguerdidjane, and M. M. Hand, "Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization," ASME Trans.: J. Solar Energy Eng., vol. 128, no. 4, pp. 516-531, 2006.
    • ASME Trans.: J. Solar Energy Eng. , vol.128 , Issue.4 , pp. 516-531
    • Boukhezzar, B.1    Siguerdidjane, H.2    Hand, M.M.3
  • 4
    • 54149110093 scopus 로고    scopus 로고
    • Models for monitoring wind farm power
    • A. Kusiak, H. Zheng, and Z. Song, "Models for monitoring wind farm power," Renew. Energy, vol. 34, no. 6, pp. 1487-1493, 2009.
    • (2009) Renew. Energy , vol.34 , Issue.6 , pp. 1487-1493
    • Kusiak, A.1    Zheng, H.2    Song, Z.3
  • 5
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • DOI 10.1016/S0167-6105(98)00192-5, PII S0167610598001925
    • L. Landberg, "Short-term prediction of the power production from wind farms," J. Wind Eng. Ind. Aerodyn., vol. 80, no. 1-2, pp. 207-220, 1999. (Pubitemid 30024264)
    • (1999) Journal of Wind Engineering and Industrial Aerodynamics , vol.80 , Issue.1-2 , pp. 207-220
    • Landberg, L.1
  • 6
    • 0032122184 scopus 로고    scopus 로고
    • Short-term forecasting of wind speed and related electrical power
    • DOI 10.1016/S0038-092X(98)00032-2, PII S0038092X98000322
    • M. Alexiadis, P. Dokopoulos, H. Sahsamanoglou, and I. Manousaridis, "Short-term forecasting ofwind speed and related electrical power," Solar Energy, vol. 63, no. 1, pp. 61-68, 1998. (Pubitemid 28397933)
    • (1998) Solar Energy , vol.63 , Issue.1 , pp. 61-68
    • Alexiadis, M.C.1    Dokopoulos, P.S.2    Sahsamanoglou, H.S.3    Manousaridis, I.M.4
  • 7
    • 60049089772 scopus 로고    scopus 로고
    • Innovative short-term wind generation prediction techniques
    • M. Negnevitsky and C.W. Potter, "Innovative short-term wind generation prediction techniques," in Proc. Power Syst. Conf., 2006, pp. 60-65.
    • (2006) Proc. Power Syst. Conf. , pp. 60-65
    • Negnevitsky, M.1    Potter, C.W.2
  • 8
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • I. G. Damousis, M. C. Alexiadis, J. B. Theocharis, and P. S. Dokopoulos, "A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation," Energy Convers., vol. 19, no. 2, pp. 352-361, 2004.
    • (2004) Energy Convers. , vol.19 , Issue.2 , pp. 352-361
    • Damousis, I.G.1    Alexiadis, M.C.2    Theocharis, J.B.3    Dokopoulos, P.S.4
  • 9
    • 0036504289 scopus 로고    scopus 로고
    • Short-term prediction of the aggregated power output of wind farms - A statistical analysis of the reduction of the prediction error by spatial smoothing effects
    • DOI 10.1016/S0167-6105(01)00222-7, PII S0167610501002227
    • U. Focken, M. Lange, K.Monnich, H. P.Waldl, H. G. Beyer, and A. Luig, "Short-term prediction of the aggregated power output of wind farmsa statistical analysis of the reduction of the prediction error by spatial smoothing effects," J. Wind Eng. Ind. Aerodyn., vol. 90, no. 3, pp. 231-246, 2002. (Pubitemid 34315977)
    • (2002) Journal of Wind Engineering and Industrial Aerodynamics , vol.90 , Issue.3 , pp. 231-246
    • Focken, U.1    Lange, M.2    Monnich, K.3    Waldl, H.-P.4    Beyer, H.G.5    Luig, A.6
  • 10
    • 61649090211 scopus 로고    scopus 로고
    • Short-term prediction of wind farm power: A data-mining approach
    • Mar.
    • A. Kusiak, H. Zheng, and Z. Song, "Short-term prediction of wind farm power: A data-mining approach," IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 125-136, Mar. 2009.
    • (2009) IEEE Trans. Energy Convers. , vol.24 , Issue.1 , pp. 125-136
    • Kusiak, A.1    Zheng, H.2    Song, Z.3
  • 11
    • 33747401950 scopus 로고    scopus 로고
    • Combustion efficiency optimization and virtual testing: A data-mining approach
    • DOI 10.1109/TII.2006.873598, 1668076
    • A. Kusiak and Z. Song, "Combustion efficiency optimization and virtual testing: A data-mining approach," IEEE Trans. Ind. Informat., vol. 2, no. 3, pp. 176-184, Aug. 2006. (Pubitemid 44249906)
    • (2006) IEEE Transactions on Industrial Informatics , vol.2 , Issue.3 , pp. 176-184
    • Kusiak, A.1    Song, Z.2
  • 15
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • L. Ma, S. Luan, C. Jiang, H. Liu, and Y. Zhang, "A review on the forecasting of wind speed and generated power," Renew. Sustain. Energy Rev., vol. 13, no. 4, pp. 915-920, 2009.
    • (2009) Renew. Sustain. Energy Rev. , vol.13 , Issue.4 , pp. 915-920
    • Ma, L.1    Luan, S.2    Jiang, C.3    Liu, H.4    Zhang, Y.5
  • 16
    • 0037352651 scopus 로고    scopus 로고
    • A method of tracking the peak power points for a variable speed wind energy conversion system
    • Mar.
    • R. Datta and V. T. Ranganathan, "A method of tracking the peak power points for a variable speed wind energy conversion system," IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 163-168, Mar. 2003.
    • (2003) IEEE Trans. Energy Convers. , vol.18 , Issue.1 , pp. 163-168
    • Datta, R.1    Ranganathan, V.T.2
  • 17
    • 43749086072 scopus 로고    scopus 로고
    • Wind turbine power curve estimation based on cluster center fuzzy logic modeling
    • T. Ustuntas and A. D. Sahin, "Wind turbine power curve estimation based on cluster center fuzzy logic modeling," J. Wind Eng. Ind. Aerodyn., vol. 96, no. 5, pp. 611-621, 2008.
    • (2008) J. Wind Eng. Ind. Aerodyn. , vol.96 , Issue.5 , pp. 611-621
    • Ustuntas, T.1    Sahin, A.D.2
  • 19
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: A case study
    • M. Mabel and E. Fernandez, "Analysis of wind power generation and prediction using ANN: A case study," Renew. Energy, vol. 33, no. 5, pp. 986-992, 2008.
    • (2008) Renew. Energy , vol.33 , Issue.5 , pp. 986-992
    • Mabel, M.1    Fernandez, E.2
  • 20
    • 57949092703 scopus 로고    scopus 로고
    • Study on the time-series wind speed forecasting of the wind farm based on neural networks
    • Y. Xiao, W. Wang, and X. Huo, "Study on the time-series wind speed forecasting of the wind farm based on neural networks," Energy Conserv. Technol., vol. 25, no. 2, pp. 106-109, 2007.
    • (2007) Energy Conserv. Technol. , vol.25 , Issue.2 , pp. 106-109
    • Xiao, Y.1    Wang, W.2    Huo, X.3
  • 21
    • 1542329137 scopus 로고    scopus 로고
    • Wind power prediction using recurrent multilayer perceptron neural networks
    • S. Li, "Wind power prediction using recurrent multilayer perceptron neural networks," in Proc. 2003 IEEE Power Eng. Soc. Gen. Meet., vol. 4, pp. 2325-2330.
    • Proc. 2003 IEEE Power Eng. Soc. Gen. Meet. , vol.4 , pp. 2325-2330
    • Li, S.1
  • 22
    • 4544381358 scopus 로고    scopus 로고
    • Nonlinear model identification of wind turbine with a neural network
    • Sep.
    • S. Kelouwani and K. Agbossou, "Nonlinear model identification of wind turbine with a neural network," IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 607-612, Sep. 2004.
    • (2004) IEEE Trans. Energy Convers. , vol.19 , Issue.3 , pp. 607-612
    • Kelouwani, S.1    Agbossou, K.2
  • 23
    • 0031612385 scopus 로고    scopus 로고
    • Evaluating feature selection methods for learning in data mining applications
    • Kohala Coast, HI
    • S. Piramuthu, "Evaluating feature selection methods for learning in data mining applications," in Proc. Thirty-First Hawaii Int. Conf. Syst. Sci., Kohala Coast, HI, 1998, vol. 5, pp. 294-302.
    • (1998) Proc. Thirty-First Hawaii Int. Conf. Syst. Sci. , vol.5 , pp. 294-302
    • Piramuthu, S.1
  • 25
    • 54549099006 scopus 로고    scopus 로고
    • Performance of featureselection methods in the classification of high-dimension data
    • J. Hua, W. D. Tembe, and E. R. Dougherty, "Performance of featureselection methods in the classification of high-dimension data," Pattern Recognit., vol. 42, no. 3, pp. 409-424, 2009.
    • (2009) Pattern Recognit. , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.D.2    Dougherty, E.R.3
  • 26
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • C. Tsai, "Feature selection in bankruptcy prediction," Knowl.-Based Syst., vol. 22, no. 2, pp. 120-127, 2009.
    • (2009) Knowl.-Based Syst. , vol.22 , Issue.2 , pp. 120-127
    • Tsai, C.1
  • 27
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • J. H. Friedman, "Stochastic gradient boosting," Comput. Statist. Data Anal., vol. 38, no. 4, pp. 367-378, 2002.
    • (2002) Comput. Statist. Data Anal. , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 28
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman, "Greedy function approximation: A gradient boosting machine," Ann. Statist., vol. 29, no. 5, pp. 1189-1232, 2001.
    • (2001) Ann. Statist. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.