메뉴 건너뛰기




Volumn 23, Issue 4, 2010, Pages 487-494

Hybrid model based on SVM with Gaussian loss function and adaptive Gaussian PSO

Author keywords

Adaptive; Forecasting; Gaussian loss function; Particle swarm optimization; Support vector machine

Indexed keywords

ADAPTIVE FORECASTING; GAUSSIAN LOSS FUNCTION; GAUSSIAN PARTICLES; GAUSSIANS; HYBRID FORECASTING; HYBRID MODEL; IN-FIELD; INPUT SERIES; LOSS FUNCTIONS; UNKNOWN PARAMETERS;

EID: 77950519217     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2009.07.003     Document Type: Article
Times cited : (20)

References (35)
  • 1
    • 31044432611 scopus 로고    scopus 로고
    • Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection
    • Aci{dotless}r N., Özdamar Ö., and Güzeliş C. Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection. Engineering Applications of Artificial Intelligence 19 2 (2006) 209-218
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.2 , pp. 209-218
    • Acir, N.1    Özdamar, Ö.2    Güzeliş, C.3
  • 3
    • 0035284272 scopus 로고    scopus 로고
    • Models for estimating design effort and time
    • Bashir H.A., and Thomson V. Models for estimating design effort and time. Design Studies 22 2 (2001) 141-155
    • (2001) Design Studies , vol.22 , Issue.2 , pp. 141-155
    • Bashir, H.A.1    Thomson, V.2
  • 8
    • 64649086616 scopus 로고    scopus 로고
    • Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil
    • Fei S.W., Wang M.J., Miao Y.B., et al. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil. Energy Conversion and Management 50 6 (2009) 1604-1609
    • (2009) Energy Conversion and Management , vol.50 , Issue.6 , pp. 1604-1609
    • Fei, S.W.1    Wang, M.J.2    Miao, Y.B.3
  • 9
    • 33747881516 scopus 로고    scopus 로고
    • Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition
    • Frias-Martinez E., Sanchez A., and Velez J. Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition. Engineering Applications of Artificial Intelligence 19 6 (2006) 693-704
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.6 , pp. 693-704
    • Frias-Martinez, E.1    Sanchez, A.2    Velez, J.3
  • 10
    • 58949092610 scopus 로고    scopus 로고
    • Application of support vector machines in scour prediction on grade-control structures
    • Goel A., and Pal M. Application of support vector machines in scour prediction on grade-control structures. Engineering Applications of Artificial Intelligence 22 2 (2009) 216-223
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , Issue.2 , pp. 216-223
    • Goel, A.1    Pal, M.2
  • 11
    • 0031083913 scopus 로고    scopus 로고
    • Modeling and measuring product development cycle time across industries
    • Griffin A. Modeling and measuring product development cycle time across industries. Journal of Engineering and Technology Management 14 1 (1997) 1-24
    • (1997) Journal of Engineering and Technology Management , vol.14 , Issue.1 , pp. 1-24
    • Griffin, A.1
  • 12
    • 0031527929 scopus 로고    scopus 로고
    • The effect of project and process characteristics on product development cycle time
    • Griffin A. The effect of project and process characteristics on product development cycle time. Journal of Marketing Research 34 1 (1997) 24-35
    • (1997) Journal of Marketing Research , vol.34 , Issue.1 , pp. 24-35
    • Griffin, A.1
  • 13
    • 46849083316 scopus 로고    scopus 로고
    • Fuzzy one-class support vector machines
    • Hao, P.Y., 2008. Fuzzy one-class support vector machines. Fuzzy Sets and Systems, 159(18), 2317-2336.
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.18 , pp. 2317-2336
    • Hao, P.Y.1
  • 14
    • 18144389453 scopus 로고    scopus 로고
    • Application of support vector machines to bandwidth reservation in sectored cellular communications
    • Huang C.J., Lai W.K., Luo R.L., and Yan Y.L. Application of support vector machines to bandwidth reservation in sectored cellular communications. Engineering Applications of Artificial Intelligence 18 5 (2005) 585-594
    • (2005) Engineering Applications of Artificial Intelligence , vol.18 , Issue.5 , pp. 585-594
    • Huang, C.J.1    Lai, W.K.2    Luo, R.L.3    Yan, Y.L.4
  • 16
    • 33947136501 scopus 로고    scopus 로고
    • Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
    • Krohling A.R., and Coelho L.S. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 36 6 (2006) 1407-1416
    • (2006) IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics , vol.36 , Issue.6 , pp. 1407-1416
    • Krohling, A.R.1    Coelho, L.S.2
  • 17
    • 33846063260 scopus 로고    scopus 로고
    • Face recognition using total margin-based adaptive fuzzy support vector machines
    • Liu Y.H., and Chen Y.T. Face recognition using total margin-based adaptive fuzzy support vector machines. IEEE Transactions on Neural Networks 18 1 (2007) 178-192
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.1 , pp. 178-192
    • Liu, Y.H.1    Chen, Y.T.2
  • 18
    • 67349108621 scopus 로고    scopus 로고
    • Support vector machine based aerodynamic analysis of cable stayed bridges
    • Lute V., Upadhyay A., and Singh K.K. Support vector machine based aerodynamic analysis of cable stayed bridges. Advances in Engineering Software 40 9 (2009) 830-835
    • (2009) Advances in Engineering Software , vol.40 , Issue.9 , pp. 830-835
    • Lute, V.1    Upadhyay, A.2    Singh, K.K.3
  • 20
    • 34250715899 scopus 로고    scopus 로고
    • Forecasting of the daily meteorological pollution using wavelets and support vector machine
    • Osowski S., and Garanty K. Forecasting of the daily meteorological pollution using wavelets and support vector machine. Engineering Applications of Artificial Intelligence 20 6 (2007) 745-755
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.6 , pp. 745-755
    • Osowski, S.1    Garanty, K.2
  • 21
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • Samanta B., Al-Balushi K.R., and Al-Araimi S.A. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence 16 7-8 (2003) 657-665
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , Issue.7-8 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 23
    • 0036262585 scopus 로고    scopus 로고
    • Approximate estimation of the product life cycle cost using artificial neural networks in conceptual design
    • Seo K.K., Park J.H., Jang D.S., and Wallace D. Approximate estimation of the product life cycle cost using artificial neural networks in conceptual design. International Journal of Advanced Manufacturing Technology 19 6 (2002) 461-471
    • (2002) International Journal of Advanced Manufacturing Technology , vol.19 , Issue.6 , pp. 461-471
    • Seo, K.K.1    Park, J.H.2    Jang, D.S.3    Wallace, D.4
  • 25
    • 28244467848 scopus 로고    scopus 로고
    • Posterior probability support vector machines for unbalanced data
    • Tao Q., Wu G.W., and Wang F.Y. Posterior probability support vector machines for unbalanced data. IEEE Transactions on Neural Networks 16 6 (2005) 1561-1573
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1561-1573
    • Tao, Q.1    Wu, G.W.2    Wang, F.Y.3
  • 26
    • 54049114256 scopus 로고    scopus 로고
    • Support vector machines for detection of electrocardiographic changes in partial epileptic patients
    • Übeyli E.D. Support vector machines for detection of electrocardiographic changes in partial epileptic patients. Engineering Applications of Artificial Intelligence 21 8 (2008) 1196-1203
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.8 , pp. 1196-1203
    • Übeyli, E.D.1
  • 29
    • 31744447275 scopus 로고    scopus 로고
    • Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference
    • Vong C.M., Wong P.K., and Li Y.P. Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference. Engineering Applications of Artificial Intelligence 19 3 (2006) 277-287
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.3 , pp. 277-287
    • Vong, C.M.1    Wong, P.K.2    Li, Y.P.3
  • 30
    • 30344453065 scopus 로고    scopus 로고
    • A new fuzzy support vector Machinemachine to Evaluate Credit Riskevaluate credit risk
    • Wang Y.Q., Wang S.Y., and Lai K.K. A new fuzzy support vector Machinemachine to Evaluate Credit Riskevaluate credit risk. IEEE Transactions on Fuzzy Systems 13 6 (2005) 820-831
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.6 , pp. 820-831
    • Wang, Y.Q.1    Wang, S.Y.2    Lai, K.K.3
  • 31
    • 60249083637 scopus 로고    scopus 로고
    • The forecasting model based on wavelet v-support vector machine
    • Wu Q. The forecasting model based on wavelet v-support vector machine. Expert Systems with Applications 36 4 (2009) 7604-7610
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7604-7610
    • Wu, Q.1
  • 34
    • 67349139293 scopus 로고    scopus 로고
    • An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs
    • Yang S.Y., Huang Q., Li L.L., et al. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artificial Intelligence in Medicine 46 2 (2009) 155-163
    • (2009) Artificial Intelligence in Medicine , vol.46 , Issue.2 , pp. 155-163
    • Yang, S.Y.1    Huang, Q.2    Li, L.L.3
  • 35
    • 67349177004 scopus 로고    scopus 로고
    • Geomechanical parameters identification by particle swarm optimization and support vector machine
    • Zhao H.B., and Yin S. Geomechanical parameters identification by particle swarm optimization and support vector machine. Applied Mathematical Modelling 33 10 (2009) 3997-4012
    • (2009) Applied Mathematical Modelling , vol.33 , Issue.10 , pp. 3997-4012
    • Zhao, H.B.1    Yin, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.