메뉴 건너뛰기




Volumn 61, Issue 2, 2010, Pages 425-431

Independent component subspace method and its application to fault detection

Author keywords

Ensemble learning; Fault detection; Principal component analysis; Random subspace method

Indexed keywords

DIFFERENT PROCESS; EASTMAN; ENSEMBLE LEARNING; ENSEMBLE STATISTICS; HIGH-DIMENSION DATA; INDEPENDENT COMPONENTS; INDUSTRIAL PROCESSS; MODELING PERFORMANCE; MODELING PROBLEMS; MODELING REQUIREMENTS; MONITORING MODELS; PHYSICAL MEANINGS; RANDOM SUBSPACE METHOD; SUB-SPACE METHODS; WEIGHTED VALUES;

EID: 77950353260     PISSN: 04381157     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (15)
  • 1
    • 55349101647 scopus 로고    scopus 로고
    • A PCA based fault detection scheme for an industrial high pressure polyethylene reactor
    • Rumana S, Sirish L S, Uttandaraman S. A PCA based fault detection scheme for an industrial high pressure polyethylene reactor. Macromolecular Reaction Engineering, 2008, 2(1): 12-30.
    • (2008) Macromolecular Reaction Engineering , vol.2 , Issue.1 , pp. 12-30
    • Rumana, S.1    Sirish, L.S.2    Uttandaraman, S.3
  • 2
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data monitoring
    • Qin S J. Recursive PLS algorithms for adaptive data monitoring. Comput. Chem. Eng., 1998, 22(4/5): 503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning, 1996, 24(2): 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T K. The random subspace method for constructing decision forests. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832-844.
    • (1998) IEEE Trans on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 8
    • 54449084620 scopus 로고    scopus 로고
    • Boosting random subspace method
    • Nicolás G P, Domingo O B. Boosting random subspace method. Neural Networks, 2008, 21(9): 1344-1362.
    • (2008) Neural Networks , vol.21 , Issue.9 , pp. 1344-1362
    • Nicolás, G.P.1    Domingo, O.B.2
  • 9
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Tao D, Tang X, Li X, Wu X. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions Pattern Analysis and Machine Intelligence, 2006, 28(7): 1088-1099.
    • (2006) IEEE Transactions Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 10
    • 77950342222 scopus 로고    scopus 로고
    • A subspace fault detection method based on IC-contribution
    • Zhang Muguang, Song Zhihuan. A subspace fault detection method based on IC-contribution. Control Theory and Applications, 2010, 27(3): 274-281.
    • (2010) Control Theory and Applications , vol.27 , Issue.3 , pp. 274-281
    • Zhang, M.1    Song, Z.2
  • 15
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge Z, Song Z. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Ind. Eng. Chem. Res., 2007, 46(7): 2054-2063.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , Issue.7 , pp. 2054-2063
    • Ge, Z.1    Song, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.