메뉴 건너뛰기




Volumn 2, Issue 4, 2008, Pages 270-288

Kinetic models of brain activity

Author keywords

Complex networks; Multiscale effects; Neural field models; Neural mass models

Indexed keywords

ARTICLE; BRAIN CORTEX; BRAIN FUNCTION; COGNITION; ELECTROENCEPHALOGRAM; EMPIRICISM; EVOKED SOMATOSENSORY RESPONSE; HUMAN; KINETICS; MATHEMATICAL MODEL; METHODOLOGY; MOLECULAR DYNAMICS; NERVE CELL; NEUROIMAGING; NEUROSCIENCE; OSCILLATION; PRIORITY JOURNAL; SENSORY STIMULATION;

EID: 77949657662     PISSN: 19317557     EISSN: 19317565     Source Type: Journal    
DOI: 10.1007/s11682-008-9033-4     Document Type: Article
Times cited : (5)

References (104)
  • 1
    • 30744439313 scopus 로고    scopus 로고
    • A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    • doi:10.1523/JNEUROSCI.3874-05.2006
    • Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26, 63-72. doi: 10. 1523/JNEUROSCI. 3874-05. 2006.
    • (2006) The Journal of Neuroscience , vol.26 , pp. 63-72
    • Achard, S.1    Salvador, R.2    Whitcher, B.3    Suckling, J.4    Bullmore, E.5
  • 2
    • 0016640311 scopus 로고
    • Homogeneous nets of neuron-like elements
    • doi:10.1007/BF00339367
    • Amari, S. (1975). Homogeneous nets of neuron-like elements. Biological Cybernetics, 17, 211-220. doi: 10. 1007/BF00339367.
    • (1975) Biological Cybernetics , vol.17 , pp. 211-220
    • Amari, S.1
  • 3
    • 0017713690 scopus 로고
    • Dynamics of pattern formation in lateral-inhibition type neural fields
    • doi:10.1007/BF00337259
    • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27, 77-87. doi: 10. 1007/BF00337259.
    • (1977) Biological Cybernetics , vol.27 , pp. 77-87
    • Amari, S.1
  • 4
    • 21844459215 scopus 로고    scopus 로고
    • When instability makes sense
    • doi:10.1038/436036b
    • Ashwin, P., & Timme, M. (2005). When instability makes sense. Nature, 436, 36-37. doi: 10. 1038/436036b.
    • (2005) Nature , vol.436 , pp. 36-37
    • Ashwin, P.1    Timme, M.2
  • 6
    • 45449093446 scopus 로고    scopus 로고
    • Neuronal dynamics and brain connectivity
    • A. R. McIntosh and V. K. Jirsa (Eds.), Berlin: Springer
    • Breakspear, M., & Jirsa, V. (2007). Neuronal dynamics and brain connectivity. In A. R. McIntosh, & V. K. Jirsa (Eds.), Handbook of Brain Connectivity. Berlin: Springer.
    • (2007) Handbook of Brain Connectivity
    • Breakspear, M.1    Jirsa, V.2
  • 7
    • 25444475865 scopus 로고    scopus 로고
    • Dynamics of a neural system with a multiscale architecture
    • doi:10.1098/rstb.2005.1643
    • Breakspear, M., & Stam, K. J. (2005). Dynamics of a neural system with a multiscale architecture. Phil. Trans. R. Soc. B, 360, 1051-1074. doi: 10. 1098/rstb. 2005. 1643.
    • (2005) Phil. Trans. R. Soc. B , vol.360 , pp. 1051-1074
    • Breakspear, M.1    Stam, K.J.2
  • 8
    • 33747891705 scopus 로고    scopus 로고
    • A unifying explanation of generalized seizures via the bifurcation analysis of a dynamical brain model
    • doi:10.1093/cercor/bhj072
    • Breakspear, M., Roberts, J. A., Terry, J. R., Rodrigues, S., & Robinson, P. A. (2005). A unifying explanation of generalized seizures via the bifurcation analysis of a dynamical brain model. Cerebral Cortex (New York, N. Y.), 16, 1296-1313. doi: 10. 1093/cercor/bhj072.
    • (2005) Cerebral Cortex (New York, N.Y.) , vol.16 , pp. 1296-1313
    • Breakspear, M.1    Roberts, J.A.2    Terry, J.R.3    Rodrigues, S.4    Robinson, P.A.5
  • 9
    • 0346365199 scopus 로고    scopus 로고
    • Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a nonlinear model of neuronal dynamics
    • doi:10.1088/0954-898X/14/4/305
    • Breakspear, M., Terry, J., & Friston, K. (2003a). Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a nonlinear model of neuronal dynamics. Network: computation in Neural Systems, 14, 703-732. doi: 10. 1088/0954-898X/14/4/305.
    • (2003) Network: Computation in Neural Systems , vol.14 , pp. 703-732
    • Breakspear, M.1    Terry, J.2    Friston, K.3
  • 10
    • 0141535120 scopus 로고    scopus 로고
    • A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia
    • doi:10.1016/S1053-8119(03)00332-X
    • Breakspear, M., Terry, J., Friston, K., Williams, L., Brown, K., Brennan, J., et al. (2003b). A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia. NeuroImage, 20, 466-478. doi: 10. 1016/S1053-8119(03)00332-X.
    • (2003) NeuroImage , vol.20 , pp. 466-478
    • Breakspear, M.1    Terry, J.2    Friston, K.3    Williams, L.4    Brown, K.5    Brennan, J.6
  • 11
    • 0842286453 scopus 로고    scopus 로고
    • Topographic analysis of phase dynamics in neural systems reveals formation and dissolution of 'dynamic cell assemblies
    • doi:10.1023/B:JCNS.0000004841.66897.7d
    • Breakspear, M., Williams, L., & Stam, K. (2004). Topographic analysis of phase dynamics in neural systems reveals formation and dissolution of 'dynamic cell assemblies'. Journal of Computational Neuroscience, 16, 49-68. doi: 10. 1023/B: JCNS. 0000004841. 66897. 7d.
    • (2004) Journal of Computational Neuroscience , vol.16 , pp. 49-68
    • Breakspear, M.1    Williams, L.2    Stam, K.3
  • 12
    • 33947496857 scopus 로고    scopus 로고
    • The role of neural context in large-scale neurocognitive network operations
    • A. R. McIntosh and V. K. Jirsa (Eds.), Berlin: Springer
    • Bressler, S. L., & McIntosh, A. R. (2007). The role of neural context in large-scale neurocognitive network operations. In A. R. McIntosh, & V. K. Jirsa (Eds.), Handbook of brain connectivity. Berlin: Springer.
    • (2007) Handbook of Brain Connectivity
    • Bressler, S.L.1    McIntosh, A.R.2
  • 13
    • 6644226801 scopus 로고    scopus 로고
    • Effects of synaptic noise and filtering on the frequency response of spiking neurons
    • doi:10.1103/PhysRevLett.86.2186
    • Brunel, N., Chance, F., Fourcaud, N., & Abbott, L. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86, 2186-2189. doi: 10. 1103/PhysRevLett. 86. 2186.
    • (2001) Physical Review Letters , vol.86 , pp. 2186-2189
    • Brunel, N.1    Chance, F.2    Fourcaud, N.3    Abbott, L.4
  • 14
    • 0030666829 scopus 로고    scopus 로고
    • Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI
    • doi:10.1093/cercor/7.8.768
    • Buchel, C., & Friston, K. J. (1997). Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex (New York, N. Y.), 7, 768-778. doi: 10. 1093/cercor/7. 8. 768.
    • (1997) Cerebral Cortex (New York, N.Y.) , vol.7 , pp. 768-778
    • Buchel, C.1    Friston, K.J.2
  • 15
    • 23944441267 scopus 로고    scopus 로고
    • Waves, bumps, and patterns in neural field theories
    • doi:10.1007/s00422-005-0574-y
    • Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93, 91-108. doi: 10. 1007/s00422-005-0574-y.
    • (2005) Biological Cybernetics , vol.93 , pp. 91-108
    • Coombes, S.1
  • 16
    • 50949120410 scopus 로고    scopus 로고
    • Neural fields
    • Coombes, S. (2006). Neural fields. Scholarpedia, 1(6), 1373.
    • (2006) Scholarpedia , vol.1 , Issue.6 , pp. 1373
    • Coombes, S.1
  • 17
    • 0037446036 scopus 로고    scopus 로고
    • Waves and bumps in neuronal networks with axo-dendritic synaptic interactions
    • doi:10.1016/S0167-2789(03)00002-2
    • Coombes, S., Lord, G. J., & Owen, M. R. (2003). Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Physica D Nonlinear Phenomena, 178, 219-241. doi: 10. 1016/S0167-2789(03)00002-2.
    • (2003) Physica D Nonlinear Phenomena , vol.178 , pp. 219-241
    • Coombes, S.1    Lord, G.J.2    Owen, M.R.3
  • 18
    • 35949003696 scopus 로고    scopus 로고
    • Modeling electrocortical activity through improved local approximations of integral neural field equations
    • Coombes Venkov, N. A., Shiau, L., Bojak, I., Liley, D. T. J., & Laing, R. (2007). Modeling electrocortical activity through improved local approximations of integral neural field equations. Physical Review E, 76, 051901.
    • (2007) Physical Review E , vol.76 , pp. 051901
    • Coombes Venkov, N.A.1    Shiau, L.2    Bojak, I.3    Liley, D.T.J.4    Laing, R.5
  • 19
    • 0346992326 scopus 로고    scopus 로고
    • Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity
    • doi:10.1111/j.0013-9580.2003.12005.x
    • da Silva, F., Blanes, W., Kalitzin, S. N., Parra, J., Suffczynski, P., & Velis, D. N. (2003). Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia, 44, 72-83. doi: 10. 1111/j. 0013-9580. 2003. 12005. x.
    • (2003) Epilepsia , vol.44 , pp. 72-83
    • da Silva, F.1    Blanes, W.2    Kalitzin, S.N.3    Parra, J.4    Suffczynski, P.5    Velis, D.N.6
  • 20
    • 1642517506 scopus 로고    scopus 로고
    • Attention and working memory: A dynamical model of neuronal activity in the prefrontal cortex
    • doi:10.1046/j.1460-9568.2003.02956.x
    • Deco, G., & Rolls, E. T. (2003). Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex. The European Journal of Neuroscience, 18, 2374-2390. doi: 10. 1046/j. 1460-9568. 2003. 02956. x.
    • (2003) The European Journal of Neuroscience , vol.18 , pp. 2374-2390
    • Deco, G.1    Rolls, E.T.2
  • 21
    • 0348226496 scopus 로고    scopus 로고
    • A neurodynamical cortical model of visual attention and invariant object recognition
    • doi:10.1016/j.visres.2003.09.037
    • Deco, G., & Rolls, E. T. (2004). A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research, 44, 621-644. doi: 10. 1016/j. visres. 2003. 09. 037.
    • (2004) Vision Research , vol.44 , pp. 621-644
    • Deco, G.1    Rolls, E.T.2
  • 22
    • 27744454167 scopus 로고    scopus 로고
    • Attention, short term memory, and action selection: A unifying theory
    • Deco, G., & Rolls, E. T. (2005). Attention, short term memory, and action selection: a unifying theory. Progress in Neurobiology, 76, 236-256.
    • (2005) Progress in Neurobiology , vol.76 , pp. 236-256
    • Deco, G.1    Rolls, E.T.2
  • 23
    • 33747252187 scopus 로고    scopus 로고
    • Decision-making and Weber's law: A neurophysiological model
    • doi:10.1111/j.1460-9568.2006.04940.x
    • Deco, G., & Rolls, E. (2006). Decision-making and Weber's law: a neurophysiological model. The European Journal of Neuroscience, 24, 901-916. doi: 10. 1111/j. 1460-9568. 2006. 04940. x.
    • (2006) The European Journal of Neuroscience , vol.24 , pp. 901-916
    • Deco, G.1    Rolls, E.2
  • 25
    • 24944584124 scopus 로고    scopus 로고
    • Biophysically detailed modelling of microcircuits and beyond
    • doi:10.1016/j.tins.2005.08.002
    • De Schutter, Ekeberg, O., Kotaleski, J. H., Achard, P., & Lansner, A. (2005). Biophysically detailed modelling of microcircuits and beyond. Trends in Neurosciences, 28, 562-569. doi: 10. 1016/j. tins. 2005. 08. 002.
    • (2005) Trends in Neurosciences , vol.28 , pp. 562-569
    • de Schutter1    Ekeberg, O.2    Kotaleski, J.H.3    Achard, P.4    Lansner, A.5
  • 26
    • 1542400571 scopus 로고    scopus 로고
    • Enhancement of neural synchrony by time delay
    • doi:10.1103/PhysRevLett.92.074104
    • Dhamala, M., Jirsa, V. K., & Ding, M. (2004). Enhancement of neural synchrony by time delay. Physical Review Letters, 92, 074104. doi: 10. 1103/PhysRevLett. 92. 074104.
    • (2004) Physical Review Letters , vol.92 , pp. 074104
    • Dhamala, M.1    Jirsa, V.K.2    Ding, M.3
  • 27
    • 0037165165 scopus 로고    scopus 로고
    • Humans integrate visual and haptic information in a statistically optimal fashion
    • doi:10.1038/415429a
    • Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429-433. doi: 10. 1038/415429a.
    • (2002) Nature , vol.415 , pp. 429-433
    • Ernst, M.O.1    Banks, M.S.2
  • 29
    • 0036716145 scopus 로고    scopus 로고
    • Dynamics of the firing probability of noisy integrate-and-fire neurons
    • doi:10.1162/089976602320264015
    • Fourcaud, N., & Brunel, N. (2002). Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Computation, 14, 2057-2110. doi: 10. 1162/089976602320264015.
    • (2002) Neural Computation , vol.14 , pp. 2057-2110
    • Fourcaud, N.1    Brunel, N.2
  • 31
    • 0018673582 scopus 로고
    • Nonlinear gain mediating cortical stimulus response relations
    • doi:10.1007/BF00337412
    • Freeman, W. J. (1979). Nonlinear gain mediating cortical stimulus response relations. Biol Cybem, 33, 237-247. doi: 10. 1007/BF00337412.
    • (1979) Biol Cybem , vol.33 , pp. 237-247
    • Freeman, W.J.1
  • 32
    • 0023186918 scopus 로고
    • Simulation of chaotic EEG patterns with a dynamic model of the olfactory system
    • doi:10.1007/BF00317988
    • Freeman, W. J. (1987). Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biological Cybernetics, 56, 139-150. doi: 10. 1007/BF00317988.
    • (1987) Biological Cybernetics , vol.56 , pp. 139-150
    • Freeman, W.J.1
  • 33
    • 50949092087 scopus 로고    scopus 로고
    • Scale-free neocortical dynamics
    • Freeman, W. J., & Breakspear, M. (2007). Scale-free neocortical dynamics. Scholarpedia, 2, 1357.
    • (2007) Scholarpedia , vol.2 , pp. 1357
    • Freeman, W.J.1    Breakspear, M.2
  • 34
    • 0030732867 scopus 로고    scopus 로고
    • Another neural code?
    • doi:10.1006/nimg.1997.0260
    • Friston, K. J. (1997). Another neural code? NeuroImage, 5, 213-220. doi: 10. 1006/nimg. 1997. 0260.
    • (1997) NeuroImage , vol.5 , pp. 213-220
    • Friston, K.J.1
  • 35
    • 0036334947 scopus 로고    scopus 로고
    • Bayesian estimation of dynamical systems: An application to fMRI
    • doi:10.1006/nimg.2001.1044
    • Friston, K. J. (2002). Bayesian estimation of dynamical systems: an application to fMRI. NeuroImage, 16, 513-530. doi: 10. 1006/nimg. 2001. 1044.
    • (2002) NeuroImage , vol.16 , pp. 513-530
    • Friston, K.J.1
  • 36
    • 44449115519 scopus 로고    scopus 로고
    • DEM: A variational treatment of dynamic systems
    • doi:10.1016/j.neuroimage.2008.02.054
    • Friston, K. J. (2008). DEM: a variational treatment of dynamic systems. NeuroImage, 41, 849-885. doi: 10. 1016/j. neuroimage. 2008. 02. 054.
    • (2008) NeuroImage , vol.41 , pp. 849-885
    • Friston, K.J.1
  • 38
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • doi:10.1016/S1053-8119(03)00202-7
    • Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 1273-1302. doi: 10. 1016/S1053-8119(03)00202-7.
    • (2003) NeuroImage , vol.19 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 40
    • 0024514737 scopus 로고
    • Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties
    • Gray, C., Konig, P., Engel, A., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Science, 338, 334-337.
    • (1989) Science , vol.338 , pp. 334-337
    • Gray, C.1    Konig, P.2    Engel, A.3    Singer, W.4
  • 45
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500-544.
    • (1952) The Journal of Physiology , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 47
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • doi:10.1073/pnas.79.8.2554
    • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79, 2554-2558. doi: 10. 1073/pnas. 79. 8. 2554.
    • (1982) Proceedings of the National Academy of Sciences of the United States of America , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 48
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • doi:10.1073/pnas.81.10.3088
    • Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences of the United States of America, 81, 3088-3092. doi: 10. 1073/pnas. 81. 10. 3088.
    • (1984) Proceedings of the National Academy of Sciences of the United States of America , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 51
    • 0032791091 scopus 로고    scopus 로고
    • Optimal integration of texture and motion cues to depth
    • doi:10.1016/S0042-6989(99)00088-7
    • Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth. Vision Research, 39, 3621-3629. doi: 10. 1016/S0042-6989(99)00088-7.
    • (1999) Vision Research , vol.39 , pp. 3621-3629
    • Jacobs, R.A.1
  • 52
    • 0029374946 scopus 로고
    • Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns
    • doi:10.1007/BF00199471
    • Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73, 357-366. doi: 10. 1007/BF00199471.
    • (1995) Biological Cybernetics , vol.73 , pp. 357-366
    • Jansen, B.H.1    Rit, V.G.2
  • 53
    • 6344291300 scopus 로고    scopus 로고
    • Connectivity and dynamics of neural information processing
    • doi:10.1385/NI:2:2:183
    • Jirsa, V. K. (2004). Connectivity and dynamics of neural information processing. Neuroinformatics, 2, 183-204. doi: 10. 1385/NI: 2: 2: 183.
    • (2004) Neuroinformatics , vol.2 , pp. 183-204
    • Jirsa, V.K.1
  • 54
    • 0000456175 scopus 로고    scopus 로고
    • Field theory of electromagnetic brain activity
    • doi:10.1103/PhysRevLett.77.960
    • Jirsa, V. K., & Haken, H. (1996). Field theory of electromagnetic brain activity. Physical Review Letters, 77, 960-963. doi: 10. 1103/PhysRevLett. 77. 960.
    • (1996) Physical Review Letters , vol.77 , pp. 960-963
    • Jirsa, V.K.1    Haken, H.2
  • 55
    • 0030786828 scopus 로고    scopus 로고
    • A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics
    • doi:10.1016/S0167-2789(96)00166-2
    • Jirsa, V. K., & Haken, H. (1997). A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D Nonlinear Phenomena, 99, 503-526. doi: 10. 1016/S0167-2789(96)00166-2.
    • (1997) Physica D Nonlinear Phenomena , vol.99 , pp. 503-526
    • Jirsa, V.K.1    Haken, H.2
  • 59
    • 35148866155 scopus 로고    scopus 로고
    • Neural correlates of tactile detection: A combined magnetoencephalography and biophysically based computational modeling study
    • doi:10.1523/JNEUROSCI.0482-07.2007
    • Jones, S. R., Pritchett, D. L., Stufflebeam, S. M., Haamalanen, M. S., & Moore, C. I. (2007). Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. The Journal of Neuroscience, 27, 10751-10764. doi: 10. 1523/JNEUROSCI. 0482-07. 2007.
    • (2007) The Journal of Neuroscience , vol.27 , pp. 10751-10764
    • Jones, S.R.1    Pritchett, D.L.2    Stufflebeam, S.M.3    Haamalanen, M.S.4    Moore, C.I.5
  • 60
    • 34248176808 scopus 로고    scopus 로고
    • Dynamic causal modelling of evoked responses: The role of intrinsic connections
    • doi:10.1016/j.neuroimage.2007.02.046
    • Kiebel, S. J., Garrido, M. I., & Friston, K. J. (2007). Dynamic causal modelling of evoked responses: the role of intrinsic connections. NeuroImage, 36, 332-345. doi: 10. 1016/j. neuroimage. 2007. 02. 046.
    • (2007) NeuroImage , vol.36 , pp. 332-345
    • Kiebel, S.J.1    Garrido, M.I.2    Friston, K.J.3
  • 62
    • 1642553405 scopus 로고    scopus 로고
    • Bayesian integration in sensorimotor learning
    • doi:10.1038/nature02169
    • Kording, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427, 244-247. doi: 10. 1038/nature02169.
    • (2004) Nature , vol.427 , pp. 244-247
    • Kording, K.P.1    Wolpert, D.M.2
  • 63
    • 0033196391 scopus 로고    scopus 로고
    • A coupled ordinary differential equation lattice model for the simulation of epileptic seizures
    • doi:10.1063/1.166453
    • Larter, R., & Speelman, B. (1999). A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos (Woodbury, N. Y.), 9, 795-804. doi: 10. 1063/1. 166453.
    • (1999) Chaos (Woodbury, N.Y.) , vol.9 , pp. 795-804
    • Larter, R.1    Speelman, B.2
  • 64
    • 32044470713 scopus 로고    scopus 로고
    • Understanding the transition to seizure by modeling the epileptiform Activity of general anesthetic agents
    • Liley, D. T. J., & Bojak, I. (2005). Understanding the transition to seizure by modeling the epileptiform Activity of general anesthetic agents. Journal of Clinical Neurophysiology, 22(5), 300-313.
    • (2005) Journal of Clinical Neurophysiology , vol.22 , Issue.5 , pp. 300-313
    • Liley, D.T.J.1    Bojak, I.2
  • 65
    • 0041885311 scopus 로고    scopus 로고
    • A spatially continuous mean field theory of electrocortical activity
    • doi:10.1088/0954-898X/13/1/303
    • Liley, D. T. J., Cadusch, P. J., & Dafilis, M. P. (2002). A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13, 67-113. doi: 10. 1088/0954-898X/13/1/303.
    • (2002) Network: Computation in Neural Systems , vol.13 , pp. 67-113
    • Liley, D.T.J.1    Cadusch, P.J.2    Dafilis, M.P.3
  • 67
    • 0016138266 scopus 로고
    • Model of brain rhythmic activity: The alpha-rhythm of the thalamus
    • doi:10.1007/BF00270757
    • Lopes da Silva, F. H., Hoeks, A., Smits, H., & Zetterberg, L. H. (1974). Model of brain rhythmic activity: the alpha-rhythm of the thalamus. Kybernetik, 15, 27-37. doi: 10. 1007/BF00270757.
    • (1974) Kybernetik , vol.15 , pp. 27-37
    • Lopes da Silva, F.H.1    Hoeks, A.2    Smits, H.3    Zetterberg, L.H.4
  • 68
    • 16644383684 scopus 로고    scopus 로고
    • Electroencephalographic brain dynamics following manually responded visual targets
    • Makeig, S., Delorme, A., Westerfield, M., Jung, T. P., Townsend, J., et al. (2004). Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biology, 2, e176.
    • (2004) PLoS Biology , vol.2
    • Makeig, S.1    Delorme, A.2    Westerfield, M.3    Jung, T.P.4    Townsend, J.5
  • 69
    • 45849118300 scopus 로고    scopus 로고
    • Population dynamics: Variance and the sigmoid activation function
    • doi:10.1016/j.neuroimage.2008.04.239
    • Marreiros, A., Daunizeau, J., Kiebel, S. J., & Friston, K. J. (2008a). Population dynamics: variance and the sigmoid activation function. NeuroImage, 42, 147-157. doi: 10. 1016/j. neuroimage. 2008. 04. 239.
    • (2008) NeuroImage , vol.42 , pp. 147-157
    • Marreiros, A.1    Daunizeau, J.2    Kiebel, S.J.3    Friston, K.J.4
  • 70
    • 36048949958 scopus 로고    scopus 로고
    • Dynamic causal modelling for fMRI: A two-state model
    • doi:10.1016/j.neuroimage.2007.08.019
    • Marreiros, A., Kiebel, S. J., & Friston, K. J. (2008b). Dynamic causal modelling for fMRI: a two-state model. NeuroImage, 39, 269-278. doi: 10. 1016/j. neuroimage. 2007. 08. 019.
    • (2008) NeuroImage , vol.39 , pp. 269-278
    • Marreiros, A.1    Kiebel, S.J.2    Friston, K.J.3
  • 71
    • 6344287382 scopus 로고    scopus 로고
    • Contexts and catalysts: A resolution of the localization and integration of function in the brain
    • doi:10.1385/NI:2:2:175
    • McIntosh, A. R. M. (2004). Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics, 2, 175-181. doi: 10. 1385/NI: 2: 2: 175.
    • (2004) Neuroinformatics , vol.2 , pp. 175-181
    • McIntosh, A.R.M.1
  • 72
    • 0019405994 scopus 로고
    • Voltage oscillations in the barnacle giant muscle fiber
    • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193-213.
    • (1981) Biophysical Journal , vol.35 , pp. 193-213
    • Morris, C.1    Lecar, H.2
  • 73
    • 0016251737 scopus 로고
    • The brain wave equation: A model for eeg
    • doi:10.1016/0025-5564(74)90020-0
    • Nunez, P. L. (1974). The brain wave equation: a model for eeg. Mathematical Biosciences, 21, 279-297. doi: 10. 1016/0025-5564(74)90020-0.
    • (1974) Mathematical Biosciences , vol.21 , pp. 279-297
    • Nunez, P.L.1
  • 75
    • 0034083940 scopus 로고    scopus 로고
    • On the simulation of large populations of neurons
    • Omurtag, A., Knight, B., & Sirovich, L. (2000). On the simulation of large populations of neurons. J. Comp. Neurosci., 8, 51. 53.
    • (2000) J. Comp. Neurosci. , vol.8
    • Omurtag, A.1    Knight, B.2    Sirovich, L.3
  • 76
    • 3042641165 scopus 로고    scopus 로고
    • Comparing dynamic causal models
    • doi:10.1016/j.neuroimage.2004.03.026
    • Penny, W. D., Stephan, K. E., Mechelli, A., & Friston, K. J. (2004). Comparing dynamic causal models. NeuroImage, 22, 1157-1172. doi: 10. 1016/j. neuroimage. 2004. 03. 026.
    • (2004) NeuroImage , vol.22 , pp. 1157-1172
    • Penny, W.D.1    Stephan, K.E.2    Mechelli, A.3    Friston, K.J.4
  • 77
    • 34547270480 scopus 로고    scopus 로고
    • Neural field dynamics with heterogeneous connection topology
    • doi:10.1103/PhysRevLett.98.238102
    • Qubbaj, M. R., & Jirsa, V. K. (2007). Neural field dynamics with heterogeneous connection topology. Physical Review Letters, 98, 238102. doi: 10. 1103/PhysRevLett. 98. 238102.
    • (2007) Physical Review Letters , vol.98 , pp. 238102
    • Qubbaj, M.R.1    Jirsa, V.K.2
  • 78
    • 46849100436 scopus 로고    scopus 로고
    • Transient dynamics for neural processing
    • doi:10.1126/science.1155564
    • Rabinovich, M. I., Huerta, R., & Laurent, G. (2008b). Transient dynamics for neural processing. Science, 321, 48-50. doi: 10. 1126/science. 1155564.
    • (2008) Science , vol.321 , pp. 48-50
    • Rabinovich, M.I.1    Huerta, R.2    Laurent, G.3
  • 79
    • 44349183017 scopus 로고    scopus 로고
    • Transient cognitive dynamics, metastability, and decision making
    • doi:10.1371/journal.pcbi.1000072
    • Rabinovich, M. I., Huerta, R., Varona, P., & Afraimovich, V. S. (2008a). Transient cognitive dynamics, metastability, and decision making. PLoS Computational Biology, 4, e1000072. doi: 10. 1371/journal. pcbi. 1000072.
    • (2008) PLoS Computational Biology , vol.4
    • Rabinovich, M.I.1    Huerta, R.2    Varona, P.3    Afraimovich, V.S.4
  • 80
    • 0036599227 scopus 로고    scopus 로고
    • Unified neurophysical model of EEG spectra and evoked potentials
    • doi:10.1007/s00422-002-0310-9
    • Rennie, C., Robinson, P., & Wright, J. (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biological Cybernetics, 86(6), 457-471. doi: 10. 1007/s00422-002-0310-9.
    • (2002) Biological Cybernetics , vol.86 , Issue.6 , pp. 457-471
    • Rennie, C.1    Robinson, P.2    Wright, J.3
  • 81
    • 33645660556 scopus 로고    scopus 로고
    • Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations
    • Robinson, (2006). Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Physical Review E, 73, 041904.
    • (2006) Physical Review E , vol.73 , pp. 041904
    • Robinson1
  • 82
    • 85035247673 scopus 로고    scopus 로고
    • Dynamics of large-scale brain activity in normal arousal states and epileptic seizures
    • doi:10.1103/PhysRevE.65.041924
    • Robinson, P., Rennie, C., & Rowe, D. (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 65, 41924. doi: 10. 1103/PhysRevE. 65. 041924.
    • (2002) Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , vol.65 , pp. 41924
    • Robinson, P.1    Rennie, C.2    Rowe, D.3
  • 85
    • 33646882837 scopus 로고    scopus 로고
    • On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics
    • doi:10.1016/j.physleta.2006.03.003
    • Rodrigues, S., Terry, J., & Breakspear, M. (2006). On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics. Physics Letters. [Part A], 355, 352-357. doi: 10. 1016/j. physleta. 2006. 03. 003.
    • (2006) Physics Letters. [Part A] , vol.355 , pp. 352-357
    • Rodrigues, S.1    Terry, J.2    Breakspear, M.3
  • 87
    • 18144431880 scopus 로고    scopus 로고
    • Neurophysiological architecture of functional magnetic resonance images of human brain
    • doi:10.1093/cercor/bhi016
    • Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., & Bullmore, E. (2004). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex (New York, N. Y.), 15, 1332-1342. doi: 10. 1093/cercor/bhi016.
    • (2004) Cerebral Cortex (New York, N.Y.) , vol.15 , pp. 1332-1342
    • Salvador, R.1    Suckling, J.2    Coleman, M.R.3    Pickard, J.D.4    Menon, D.5    Bullmore, E.6
  • 88
    • 12044257382 scopus 로고
    • Strange kinetics
    • doi:10.1038/363031a0
    • Shlesinger, M. F., Zaslavsky, G. M., & Klafter, J. (1993). Strange kinetics. Nature, 363, 31-37. doi: 10. 1038/363031a0.
    • (1993) Nature , vol.363 , pp. 31-37
    • Shlesinger, M.F.1    Zaslavsky, G.M.2    Klafter, J.3
  • 89
    • 4444229670 scopus 로고    scopus 로고
    • The small world of the cerebral cortex
    • doi:10.1385/NI:2:2:145
    • Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145-162. doi: 10. 1385/NI: 2: 2: 145.
    • (2004) Neuroinformatics , vol.2 , pp. 145-162
    • Sporns, O.1    Zwi, J.D.2
  • 90
    • 0347914619 scopus 로고    scopus 로고
    • Functional connectivity patterns of human magnetoencephalographic recordings: A 'small-world' network?
    • doi:10.1016/j.neulet.2003.10.063
    • Stam, C. J. (2004). Functional connectivity patterns of human magnetoencephalographic recordings: a 'small-world' network? Neuroscience Letters, 355, 25-28. doi: 10. 1016/j. neulet. 2003. 10. 063.
    • (2004) Neuroscience Letters , vol.355 , pp. 25-28
    • Stam, C.J.1
  • 91
    • 33845742477 scopus 로고    scopus 로고
    • Small-world networks and functional connectivity in Alzheimer's disease
    • doi:10.1093/cercor/bhj127
    • Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. H. (2006). Small-world networks and functional connectivity in Alzheimer's disease. Cerebral Cortex (New York, N. Y.), 17, 92-99. doi: 10. 1093/cercor/bhj127.
    • (2006) Cerebral Cortex (New York, N.Y.) , vol.17 , pp. 92-99
    • Stam, C.J.1    Jones, B.F.2    Nolte, G.3    Breakspear, M.4    Scheltens, P.H.5
  • 92
    • 33947544379 scopus 로고    scopus 로고
    • Dynamic causal models of neural system dynamics: Current state and future extensions
    • doi:10.1007/s12038-007-0012-5
    • Stephan, K. E., Harrison, L. M., Kiebel, S. J., David, O., Penny, W. D., & Friston, K. J. (2007a). Dynamic causal models of neural system dynamics: current state and future extensions. Journal of Biosciences, 32, 129-144. doi: 10. 1007/s12038-007-0012-5.
    • (2007) Journal of Biosciences , vol.32 , pp. 129-144
    • Stephan, K.E.1    Harrison, L.M.2    Kiebel, S.J.3    David, O.4    Penny, W.D.5    Friston, K.J.6
  • 94
    • 34047152797 scopus 로고    scopus 로고
    • Inter-hemispheric integration of visual processing during task-driven lateralization
    • doi:10.1523/JNEUROSCI.4766-06.2007
    • Stephan, K. E., Marshall, J. C., Penny, W. D., Friston, K. J., & Fink, G. R. (2007c). Inter-hemispheric integration of visual processing during task-driven lateralization. The Journal of Neuroscience, 27, 3512-3522. doi: 10. 1523/JNEUROSCI. 4766-06. 2007.
    • (2007) The Journal of Neuroscience , vol.27 , pp. 3512-3522
    • Stephan, K.E.1    Marshall, J.C.2    Penny, W.D.3    Friston, K.J.4    Fink, G.R.5
  • 95
    • 35048820422 scopus 로고    scopus 로고
    • Comparing hemodynamic models with DCM
    • doi:10.1016/j.neuroimage.2007.07.040
    • Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A., & Friston, K. J. (2007b). Comparing hemodynamic models with DCM. NeuroImage, 38, 387-401. doi: 10. 1016/j. neuroimage. 2007. 07. 040.
    • (2007) NeuroImage , vol.38 , pp. 387-401
    • Stephan, K.E.1    Weiskopf, N.2    Drysdale, P.M.3    Robinson, P.A.4    Friston, K.J.5
  • 96
    • 0033220219 scopus 로고    scopus 로고
    • Nonlinear EEG analysis based on a neural mass model
    • doi:10.1007/s004220050572
    • Valdes, P. A., Jimenez, J. C., Riera, J., Biscay, R., & Ozaki, T. (1999). Nonlinear EEG analysis based on a neural mass model. Biological Cybernetics, 81, 415-424. doi: 10. 1007/s004220050572.
    • (1999) Biological Cybernetics , vol.81 , pp. 415-424
    • Valdes, P.A.1    Jimenez, J.C.2    Riera, J.3    Biscay, R.4    Ozaki, T.5
  • 98
    • 0037028039 scopus 로고    scopus 로고
    • Probabilistic decision making by slow reverberation in cortical circuits
    • doi:10.1016/S0896-6273(02)01092-9
    • Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955-968. doi: 10. 1016/S0896-6273(02)01092-9.
    • (2002) Neuron , vol.36 , pp. 955-968
    • Wang, X.-J.1
  • 99
    • 0035974894 scopus 로고    scopus 로고
    • Dynamics of traveling waves in visual perception
    • doi:10.1038/35091066
    • Wilson, H. R., Blake, R., & Lee, S.-H. (2001). Dynamics of traveling waves in visual perception. Nature, 412, 907-911. doi: 10. 1038/35091066.
    • (2001) Nature , vol.412 , pp. 907-911
    • Wilson, H.R.1    Blake, R.2    Lee, S.-H.3
  • 100
    • 0015260274 scopus 로고
    • Excitatory and inhibitory interactions in localized populations of model neurons
    • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 1-24.
    • (1972) Biophysical Journal , vol.12 , Issue.1 , pp. 1-24
    • Wilson, H.R.1    Cowan, J.D.2
  • 101
    • 0015868589 scopus 로고
    • A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
    • doi:10.1007/BF00288786
    • Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55-80. doi: 10. 1007/BF00288786.
    • (1973) Kybernetik , vol.13 , Issue.2 , pp. 55-80
    • Wilson, H.R.1    Cowan, J.D.2
  • 102
    • 32544439341 scopus 로고    scopus 로고
    • A recurrent network mechanism of time integration in perceptual decisions
    • doi:10.1523/JNEUROSCI.3733-05.2006
    • Wong, K. F., & Wang, X. J. (2006). A recurrent network mechanism of time integration in perceptual decisions. The Journal of Neuroscience, 26, 1314-1328. doi: 10. 1523/JNEUROSCI. 3733-05. 2006.
    • (2006) The Journal of Neuroscience , vol.26 , pp. 1314-1328
    • Wong, K.F.1    Wang, X.J.2
  • 103
    • 11044238165 scopus 로고    scopus 로고
    • Modeling the whole brain in action
    • E. Gordon (Ed.), London: Harwood
    • Wright, J. J. (2000). Modeling the whole brain in action. In E. Gordon (Ed.), Integrative neuroscience. London: Harwood.
    • (2000) Integrative Neuroscience
    • Wright, J.J.1
  • 104
    • 0036887936 scopus 로고    scopus 로고
    • Chaos, fractional kinetics and anomalous transport
    • doi:10.1016/S0370-1573(02)00331-9
    • Zaslavsky, G. M. (2002). Chaos, fractional kinetics and anomalous transport. Physics Reports, 371, 461-580. doi: 10. 1016/S0370-1573(02)00331-9.
    • (2002) Physics Reports , vol.371 , pp. 461-580
    • Zaslavsky, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.