메뉴 건너뛰기




Volumn 98, Issue 1, 2010, Pages 87-106

Covariance matrix self-adaptation and kernel regression - Perspectives of evolutionary optimization in kernel machines

Author keywords

[No Author keywords available]

Indexed keywords

DATA SPACE; EMBEDDED LEARNING; EVOLUTION STRATEGIES; EVOLUTIONARY OPTIMIZATIONS; EXPERIMENTAL ANALYSIS; KERNEL BASED METHODS; KERNEL MACHINE; KERNEL REGRESSION; KERNEL REGRESSION METHOD; LOCAL OPTIMA; MACHINE-LEARNING; META MODEL; MODEL SIZE; NONCONVEX OPTIMIZATION; NOVEL METHODS; OBJECTIVE FUNCTIONS; OPTIMIZATION PROBLEMS; OPTIMIZATION PROCESS; PARAMETER OPTIMIZATION; PARAMETER-TUNING; REAL FUNCTIONS; SELF ADAPTATION; TEST FUNCTIONS;

EID: 77949574154     PISSN: 01692968     EISSN: None     Source Type: Journal    
DOI: 10.3233/FI-2010-218     Document Type: Article
Times cited : (5)

References (48)
  • 2
    • 84949806686 scopus 로고    scopus 로고
    • Intelligent mutation rate control in canonical genetic algorithms, foundation of intelligent systems
    • Springer
    • Bäck, T., Schütz, M.: Intelligent Mutation Rate Control in Canonical Genetic Algorithms, Foundation of Intelligent Systems, 9th International Symposium, ISMIS '96, Springer, 1996, 158-167.
    • (1996) 9th International Symposium, ISMIS '96 , pp. 158-167
    • Bäck, T.1    Schütz, M.2
  • 4
    • 0037592480 scopus 로고    scopus 로고
    • Evolution strategies - A comprehensive introduction
    • Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - A Comprehensive Introduction, Natural Computing, 1(1), 2002, 3-52.
    • (2002) Natural Computing , vol.1 , Issue.1 , pp. 3-52
    • Beyer, H.-G.1    Schwefel, H.-P.2
  • 11
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters, Neurocomputing, 64, 2005, 107-117.
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 12
    • 0008621289 scopus 로고    scopus 로고
    • Karakasis: Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters
    • Giannakoglou,K., Giotis, A., Karakasis: Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters, Inverse Problems in Engineering, 9, 2001, 389-412.
    • (2001) Inverse Problems in Engineering , vol.9 , pp. 389-412
    • Giannakoglou, K.1    Giotis, A.2
  • 17
  • 19
    • 33847421841 scopus 로고    scopus 로고
    • Variants of unsupervised kernel regression: General cost functions
    • Klanke, S., Ritter, H.: Variants of unsupervised kernel regression: General cost functions, Neurocomputing, 70(7-9), 2007, 1289-1303.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1289-1303
    • Klanke, S.1    Ritter, H.2
  • 21
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • Lawrence, N. D., Hyvärinen, A.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models, Journal of Machine Learning Research, 6, 2005, 1783-1816.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1    Hyvärinen, A.2
  • 22
    • 84898980901 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualisation of high dimensional data
    • Lawrence, N. D.: Gaussian process latent variable models for visualisation of high dimensional data, Proceesdings of NIPS, 2004.
    • (2004) Proceesdings of NIPS
    • Lawrence, N.D.1
  • 25
    • 77949616889 scopus 로고    scopus 로고
    • Evolutionary optimization of sequence kernels for detection of bacterial gene starts
    • Mersch, B., Glasmachers, T., Meinicke, P., Igel, C.: Evolutionary Optimization of Sequence Kernels for Detection of Bacterial Gene Starts, ICANN (2), 2006.
    • (2006) ICANN , vol.2
    • Mersch, B.1    Glasmachers, T.2    Meinicke, P.3    Igel, C.4
  • 26
    • 38049042173 scopus 로고    scopus 로고
    • Self-adaptation in evolutionary algorithms
    • (F. G. Lobo, C. F. Lima, Z. Michalewicz, Eds.) Springer, Berlin
    • Meyer-Nieberg, S., Beyer, H.-G.: Self-Adaptation in Evolutionary Algorithms, in: Parameter Setting in Evolutionary Algorithms (F. G. Lobo, C. F. Lima, Z. Michalewicz, Eds.), Springer, Berlin, 2007.
    • (2007) Parameter Setting in Evolutionary Algorithms
    • Meyer-Nieberg, S.1    Beyer, H.-G.2
  • 28
    • 57849090069 scopus 로고    scopus 로고
    • About the non-convex optimization problem induced by non-positive semidefinite kernel learning
    • December
    • Mierswa, I., Morik, K.: About the non-convex optimization problem induced by non-positive semidefinite kernel learning, Advances in Data Analysis and Classification, 2(3), December 2008, 241-258.
    • (2008) Advances in Data Analysis and Classification , vol.2 , Issue.3 , pp. 241-258
    • Mierswa, I.1    Morik, K.2
  • 31
    • 0000141534 scopus 로고
    • A derandomized approach to self adaptation of evolution strategies
    • Ostermeier, A., Gawelczyk, A., Hansen, N.: A Derandomized Approach to Self Adaptation of Evolution Strategies, Evolutionary Computation, 2(4), 1994, 369-380.
    • (1994) Evolutionary Computation , vol.2 , Issue.4 , pp. 369-380
    • Ostermeier, A.1    Gawelczyk, A.2    Hansen, N.3
  • 35
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T., Saul, L. K.: Nonlinear dimensionality reduction by locally linear embedding, SCIENCE, 290, 2000, 2323-2326.
    • (2000) SCIENCE , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 39
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10(5), 1998, 1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 43
    • 84983477154 scopus 로고    scopus 로고
    • An evolutionary approximation for the coefficients of decision functions within a support vector machine learning strategy
    • (A. E. Hassanien, A. Abraham, Eds.), Springer
    • Stoean, R., Preuss, M., Stoean, C., El-Darzi, E., Dumitrescu, D.: An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy, in: Foundations of Computational, Intelligence Volume1 (A. E. Hassanien, A. Abraham, Eds.), Springer, 2009, 315-347.
    • (2009) Foundations of Computational, Intelligence , vol.1 , pp. 315-347
    • Stoean, R.1    Preuss, M.2    Stoean, C.3    El-Darzi, E.4    Dumitrescu, D.5
  • 45
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J. A. K., Vandewalle, J.: Least Squares Support Vector Machine Classifiers, Neural Processing Letters, 9(3), 1999, 293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 47
    • 0001762424 scopus 로고
    • Smooth regression analysis
    • Watson, G.S.: Smooth regression analysis, Sankhya Series A, 26, 1964, 359-372.
    • (1964) Sankhya Series A , vol.26 , pp. 359-372
    • Watson, G.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.