-
1
-
-
27144540413
-
Sequential parameter optimization
-
IEEE Press
-
Bartz-Beielstein, T., Lasarczyk, C., Preuss,M.: Sequential Parameter Optimization, Proceedings of the IEEE Congress on Evolutionary Computation - CEC 2005, IEEE Press, 2005.
-
(2005)
Proceedings of the IEEE Congress on Evolutionary Computation - CEC 2005
-
-
Bartz-Beielstein, T.1
Lasarczyk, C.2
Preuss, M.3
-
2
-
-
84949806686
-
Intelligent mutation rate control in canonical genetic algorithms, foundation of intelligent systems
-
Springer
-
Bäck, T., Schütz, M.: Intelligent Mutation Rate Control in Canonical Genetic Algorithms, Foundation of Intelligent Systems, 9th International Symposium, ISMIS '96, Springer, 1996, 158-167.
-
(1996)
9th International Symposium, ISMIS '96
, pp. 158-167
-
-
Bäck, T.1
Schütz, M.2
-
4
-
-
0037592480
-
Evolution strategies - A comprehensive introduction
-
Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - A Comprehensive Introduction, Natural Computing, 1(1), 2002, 3-52.
-
(2002)
Natural Computing
, vol.1
, Issue.1
, pp. 3-52
-
-
Beyer, H.-G.1
Schwefel, H.-P.2
-
6
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm: NSGA-II
-
Deb, K., Pratap, A., Agarwal, S.,Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), 2002, 182-197.
-
(2002)
IEEE Transactions on Evolutionary Computation
, vol.6
, Issue.2
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
Meyarivan, T.4
-
7
-
-
0032626111
-
Parameter control in evolutionary algorithms
-
Eiben, A. E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms, IEEE Transactions on Evolutionary Computation, 3(2), 1999, 124-141.
-
(1999)
IEEE Transactions on Evolutionary Computation
, vol.3
, Issue.2
, pp. 124-141
-
-
Eiben, A.E.1
Hinterding, R.2
Michalewicz, Z.3
-
8
-
-
4344609427
-
Metamodel-assisted evolution strategies
-
Emmerich, M., Giotis, A., özdemir, M., Bäck, T., Giannakoglou, K.: Metamodel-Assisted Evolution Strategies, Proceedings of the 7th Conference on Parallel Problem Solving from Nature - PPSN VII, 2002.
-
(2002)
Proceedings of the 7th Conference on Parallel Problem Solving from Nature - PPSN VII
-
-
Emmerich, M.1
Giotis, A.2
Ozdemir, M.3
Bäck, T.4
Giannakoglou, K.5
-
11
-
-
15844394276
-
Evolutionary tuning of multiple SVM parameters
-
Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters, Neurocomputing, 64, 2005, 107-117.
-
(2005)
Neurocomputing
, vol.64
, pp. 107-117
-
-
Friedrichs, F.1
Igel, C.2
-
12
-
-
0008621289
-
Karakasis: Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters
-
Giannakoglou,K., Giotis, A., Karakasis: Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters, Inverse Problems in Engineering, 9, 2001, 389-412.
-
(2001)
Inverse Problems in Engineering
, vol.9
, pp. 389-412
-
-
Giannakoglou, K.1
Giotis, A.2
-
15
-
-
0003684449
-
-
Springer, Berlin
-
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Springer, Berlin, 2009.
-
(2009)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
17
-
-
0003946510
-
Principal component analysis
-
Springer, New York
-
Jolliffe, I.: Principal component analysis, Springer series in statistics, Springer, New York, 1986.
-
(1986)
Springer Series in Statistics
-
-
Jolliffe, I.1
-
18
-
-
74849095702
-
Local meta-models for optimization using evolution strategies
-
Kern, S., Hansen, N., Koumoutsakos, P.: Local Meta-models for Optimization Using Evolution Strategies, Proceedings of the 9th Conference on Parallel Problem Solving from Nature - PPSN IX, 2006.
-
(2006)
Proceedings of the 9th Conference on Parallel Problem Solving from Nature - PPSN IX
-
-
Kern, S.1
Hansen, N.2
Koumoutsakos, P.3
-
19
-
-
33847421841
-
Variants of unsupervised kernel regression: General cost functions
-
Klanke, S., Ritter, H.: Variants of unsupervised kernel regression: General cost functions, Neurocomputing, 70(7-9), 2007, 1289-1303.
-
(2007)
Neurocomputing
, vol.70
, Issue.7-9
, pp. 1289-1303
-
-
Klanke, S.1
Ritter, H.2
-
21
-
-
27844605876
-
Probabilistic non-linear principal component analysis with Gaussian process latent variable models
-
Lawrence, N. D., Hyvärinen, A.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models, Journal of Machine Learning Research, 6, 2005, 1783-1816.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1783-1816
-
-
Lawrence, N.D.1
Hyvärinen, A.2
-
22
-
-
84898980901
-
Gaussian process latent variable models for visualisation of high dimensional data
-
Lawrence, N. D.: Gaussian process latent variable models for visualisation of high dimensional data, Proceesdings of NIPS, 2004.
-
(2004)
Proceesdings of NIPS
-
-
Lawrence, N.D.1
-
24
-
-
25844496193
-
Principal Surfaces fromUnsupervisedKernel Regression
-
Meinicke, P., Klanke, S.,Memisevic, R., Ritter, H.: Principal Surfaces fromUnsupervisedKernel Regression, IEEE Trans. Pattern Anal. Mach. Intell., 27(9), 2005, 1379-1391.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.9
, pp. 1379-1391
-
-
Meinicke, P.1
Klanke, S.2
Memisevic, R.3
Ritter, H.4
-
25
-
-
77949616889
-
Evolutionary optimization of sequence kernels for detection of bacterial gene starts
-
Mersch, B., Glasmachers, T., Meinicke, P., Igel, C.: Evolutionary Optimization of Sequence Kernels for Detection of Bacterial Gene Starts, ICANN (2), 2006.
-
(2006)
ICANN
, vol.2
-
-
Mersch, B.1
Glasmachers, T.2
Meinicke, P.3
Igel, C.4
-
26
-
-
38049042173
-
Self-adaptation in evolutionary algorithms
-
(F. G. Lobo, C. F. Lima, Z. Michalewicz, Eds.) Springer, Berlin
-
Meyer-Nieberg, S., Beyer, H.-G.: Self-Adaptation in Evolutionary Algorithms, in: Parameter Setting in Evolutionary Algorithms (F. G. Lobo, C. F. Lima, Z. Michalewicz, Eds.), Springer, Berlin, 2007.
-
(2007)
Parameter Setting in Evolutionary Algorithms
-
-
Meyer-Nieberg, S.1
Beyer, H.-G.2
-
28
-
-
57849090069
-
About the non-convex optimization problem induced by non-positive semidefinite kernel learning
-
December
-
Mierswa, I., Morik, K.: About the non-convex optimization problem induced by non-positive semidefinite kernel learning, Advances in Data Analysis and Classification, 2(3), December 2008, 241-258.
-
(2008)
Advances in Data Analysis and Classification
, vol.2
, Issue.3
, pp. 241-258
-
-
Mierswa, I.1
Morik, K.2
-
29
-
-
84859217335
-
-
Morell, O., Bernholt, T., Fried, R., Kunert, J., Nunkesser, R.: An Evolutionary Algorithm for LTSRegression: A Comparative Study, 2008.
-
(2008)
An Evolutionary Algorithm for LTSRegression: A Comparative Study
-
-
Morell, O.1
Bernholt, T.2
Fried, R.3
Kunert, J.4
Nunkesser, R.5
-
31
-
-
0000141534
-
A derandomized approach to self adaptation of evolution strategies
-
Ostermeier, A., Gawelczyk, A., Hansen, N.: A Derandomized Approach to Self Adaptation of Evolution Strategies, Evolutionary Computation, 2(4), 1994, 369-380.
-
(1994)
Evolutionary Computation
, vol.2
, Issue.4
, pp. 369-380
-
-
Ostermeier, A.1
Gawelczyk, A.2
Hansen, N.3
-
34
-
-
0003681739
-
-
JohnWiley & Sons, Inc., New York, NY, USA
-
Rousseeuw, P. J., Leroy, A.M.: Robust regression and outlier detection, JohnWiley & Sons, Inc., New York, NY, USA, 1987.
-
(1987)
Robust Regression and Outlier Detection
-
-
Rousseeuw, P.J.1
Leroy, A.M.2
-
35
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis, S. T., Saul, L. K.: Nonlinear dimensionality reduction by locally linear embedding, SCIENCE, 290, 2000, 2323-2326.
-
(2000)
SCIENCE
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
36
-
-
0003408420
-
-
MIT Press, Cambridge,MA, USA
-
Schölkopf, B., Smola, A. J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge,MA, USA, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
39
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10(5), 1998, 1299-1319.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
40
-
-
77949641470
-
-
KI
-
Steffen, J., Pardowitz, M., Ritter, H.: A Manifold Representation as Common Basis for Action Production and Recognition, KI, 2009.
-
(2009)
A Manifold Representation As Common Basis for Action Production and Recognition
-
-
Steffen, J.1
Pardowitz, M.2
Ritter, H.3
-
41
-
-
46449120391
-
Evolutionary support vector regression machines
-
Stoean, R., Dumitrescu, D., Preuss, M., Stoean, C.: Evolutionary Support Vector Regression Machines, SYNASC, 2006.
-
(2006)
SYNASC
-
-
Stoean, R.1
Dumitrescu, D.2
Preuss, M.3
Stoean, C.4
-
42
-
-
65549124308
-
Concerning the potential of evolutionary support vector machines
-
Stoean, R., Preuss, M., Stoean, C., Dumitrescu, D.: Concerning the potential of evolutionary support vector machines, IEEE Congress on Evolutionary Computation CEC, 2007.
-
(2007)
IEEE Congress on Evolutionary Computation CEC
-
-
Stoean, R.1
Preuss, M.2
Stoean, C.3
Dumitrescu, D.4
-
43
-
-
84983477154
-
An evolutionary approximation for the coefficients of decision functions within a support vector machine learning strategy
-
(A. E. Hassanien, A. Abraham, Eds.), Springer
-
Stoean, R., Preuss, M., Stoean, C., El-Darzi, E., Dumitrescu, D.: An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy, in: Foundations of Computational, Intelligence Volume1 (A. E. Hassanien, A. Abraham, Eds.), Springer, 2009, 315-347.
-
(2009)
Foundations of Computational, Intelligence
, vol.1
, pp. 315-347
-
-
Stoean, R.1
Preuss, M.2
Stoean, C.3
El-Darzi, E.4
Dumitrescu, D.5
-
44
-
-
68149168103
-
Support vector machine learning with an evolutionary engine
-
Stoean, R., Stoean, M. P. C., E-Darzi, E., Dumitrescu, D.: Support vector machine learning with an evolutionary engine, Journal of the Operational Research Society, 60(8), 2009, 1116-1122.
-
(2009)
Journal of the Operational Research Society
, vol.60
, Issue.8
, pp. 1116-1122
-
-
Stoean, R.1
Stoean, M.P.C.2
E-Darzi, E.3
Dumitrescu, D.4
-
45
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J. A. K., Vandewalle, J.: Least Squares Support Vector Machine Classifiers, Neural Processing Letters, 9(3), 1999, 293-300.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
46
-
-
77949613032
-
-
Springer Verlag, Heidelberg, Germany 3-5 September
-
Ulmer, H., Streichert, F., Zell, A.: Optimization by Gaussian Processes assisted Evolution Strategies, Springer Verlag, Heidelberg, Germany, 3-5 September 2003.
-
(2003)
Optimization by Gaussian Processes Assisted Evolution Strategies
-
-
Ulmer, H.1
Streichert, F.2
Zell, A.3
-
47
-
-
0001762424
-
Smooth regression analysis
-
Watson, G.S.: Smooth regression analysis, Sankhya Series A, 26, 1964, 359-372.
-
(1964)
Sankhya Series A
, vol.26
, pp. 359-372
-
-
Watson, G.S.1
-
48
-
-
34547987546
-
Maximum margin clustering made practical
-
ACM, New York, NY, USA
-
Zhang, K., Tsang, I. W., Kwok, J. T.: Maximum margin clustering made practical, Proceedings of the 24th International Conference on Machine Learning, ACM, New York, NY, USA, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
-
-
Zhang, K.1
Tsang, I.W.2
Kwok, J.T.3
|