메뉴 건너뛰기




Volumn 70, Issue 7-9, 2007, Pages 1289-1303

Variants of unsupervised kernel regression: General cost functions

Author keywords

lunate Insensitive loss; Huber's loss; Nonlinear dimension reduction; Robust manifold learning

Indexed keywords

AUTOMATA THEORY; COST FUNCTIONS; OPTIMIZATION; REGRESSION ANALYSIS;

EID: 33847421841     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.11.015     Document Type: Article
Times cited : (19)

References (26)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15 6 (2003) 1373-1396
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 2
  • 3
    • 0002727866 scopus 로고
    • Non-parametric estimation of a smooth regression function
    • Clark R.M. Non-parametric estimation of a smooth regression function. J. R. Statist. Soc. Ser. B (Methodological) 39 1 (1977) 107-113
    • (1977) J. R. Statist. Soc. Ser. B (Methodological) , vol.39 , Issue.1 , pp. 107-113
    • Clark, R.M.1
  • 4
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets
    • Demartines P., and Herault J. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Networks 8 1 (1997) 148-154
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.1 , pp. 148-154
    • Demartines, P.1    Herault, J.2
  • 5
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: locally linear embedding techniques for high dimensional data
    • Donoho D.L., and Grimes C. Hessian eigenmaps: locally linear embedding techniques for high dimensional data. Proc. Natl. Acad. Sci. 100 10 (2003) 5591-5596
    • (2003) Proc. Natl. Acad. Sci. , vol.100 , Issue.10 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.2
  • 6
    • 0036707122 scopus 로고    scopus 로고
    • Epsilon-insensitive Hebbian learning
    • Fyfe C., and MacDonald D. Epsilon-insensitive Hebbian learning. Neurocomputing 47 (2002) 35-57
    • (2002) Neurocomputing , vol.47 , pp. 35-57
    • Fyfe, C.1    MacDonald, D.2
  • 8
    • 0000402476 scopus 로고
    • Optimal bandwidth selection in nonparametric regression function estimation
    • Härdle W., and Marron J.S. Optimal bandwidth selection in nonparametric regression function estimation. Ann. Statist. 13 4 (1985) 1465-1481
    • (1985) Ann. Statist. , vol.13 , Issue.4 , pp. 1465-1481
    • Härdle, W.1    Marron, J.S.2
  • 10
    • 33749849037 scopus 로고    scopus 로고
    • A leave-K-out cross-validation scheme for unsupervised kernel regression
    • Kollias S., Stafylopatis A., Duch W., and Oja E. (Eds), Springer, Berlin
    • Klanke S., and Ritter H. A leave-K-out cross-validation scheme for unsupervised kernel regression. In: Kollias S., Stafylopatis A., Duch W., and Oja E. (Eds). Artificial Neural Networks-ICANN 2006, Lecture Notes in Computer Science vol. 4132 (2006), Springer, Berlin 427-436
    • (2006) Artificial Neural Networks-ICANN 2006, Lecture Notes in Computer Science , vol.4132 , pp. 427-436
    • Klanke, S.1    Ritter, H.2
  • 12
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE 37 (1991) 233-243
    • (1991) AIChE , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 15
    • 0000570384 scopus 로고
    • On estimating regression
    • Nadaraya E.A. On estimating regression. Theory Probab. Appl. 10 (1964) 186-190
    • (1964) Theory Probab. Appl. , vol.10 , pp. 186-190
    • Nadaraya, E.A.1
  • 17
    • 84943274699 scopus 로고    scopus 로고
    • M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in: Proceedings of the IEEE International Conference on Neural Networks, 1993, pp. 586-591.
  • 18
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., and Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000) 2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 19
    • 84887006810 scopus 로고
    • A non-linear mapping for data structure analysis
    • Sammon Jr. J.W. A non-linear mapping for data structure analysis. IEEE Trans. Comput. 18 (1969) 401-409
    • (1969) IEEE Trans. Comput. , vol.18 , pp. 401-409
    • Sammon Jr., J.W.1
  • 23
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., deSilva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    deSilva, V.2    Langford, J.C.3
  • 25
    • 0001762424 scopus 로고
    • Smooth regression analysis
    • Watson G.S. Smooth regression analysis. Sankhya Ser. A 26 (1964) 359-372
    • (1964) Sankhya Ser. A , vol.26 , pp. 359-372
    • Watson, G.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.