메뉴 건너뛰기




Volumn 216, Issue 3, 2010, Pages 951-958

Quartic spline methods for solving one-dimensional telegraphic equations

Author keywords

Difference scheme; Generalized trapezoidal; Quartic spline; Telegraphic equation; Unconditionally stable

Indexed keywords

DIFFERENCE SCHEMES; GENERALIZED TRAPEZOIDAL FORMULAS; LEVEL SCHEMES; NUMERICAL RESULTS; QUARTIC SPLINE; TELEGRAPHIC EQUATIONS; UNCONDITIONALLY STABLE;

EID: 77949488320     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2010.01.110     Document Type: Article
Times cited : (13)

References (13)
  • 1
    • 0347975059 scopus 로고
    • An explicit difference method for the wave equation with extended stability range
    • Twizell E.H. An explicit difference method for the wave equation with extended stability range. BIT 19 (1979) 378-383
    • (1979) BIT , vol.19 , pp. 378-383
    • Twizell, E.H.1
  • 2
    • 0030216940 scopus 로고    scopus 로고
    • On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients
    • Mohanty R.K., Jain M.K., and George K. On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients. J. Comput. Appl. Math. 72 (1996) 421-431
    • (1996) J. Comput. Appl. Math. , vol.72 , pp. 421-431
    • Mohanty, R.K.1    Jain, M.K.2    George, K.3
  • 3
    • 84966238003 scopus 로고
    • A note on the operator compact implicit method for the wave equation
    • Ciment M., and Leventhal S.H. A note on the operator compact implicit method for the wave equation. Math. Comput. 32 (1978) 143-147
    • (1978) Math. Comput. , vol.32 , pp. 143-147
    • Ciment, M.1    Leventhal, S.H.2
  • 4
    • 0035500142 scopus 로고    scopus 로고
    • An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation
    • Mohanty R.K., and Jain M.K. An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation. Numer. Methods Partial Diff. Eq. 17 (2001) 684-688
    • (2001) Numer. Methods Partial Diff. Eq. , vol.17 , pp. 684-688
    • Mohanty, R.K.1    Jain, M.K.2
  • 5
    • 0942302128 scopus 로고    scopus 로고
    • An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensional
    • Mohanty R.K., Jain M.K., and Arora U. An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensional. Int. J. Comput. Math. 79 (2002) 133-142
    • (2002) Int. J. Comput. Math. , vol.79 , pp. 133-142
    • Mohanty, R.K.1    Jain, M.K.2    Arora, U.3
  • 6
    • 0942300277 scopus 로고    scopus 로고
    • An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation
    • Mohanty R.K. An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation. Appl. Math. Lett. 17 (2004) 101-105
    • (2004) Appl. Math. Lett. , vol.17 , pp. 101-105
    • Mohanty, R.K.1
  • 7
    • 74849107653 scopus 로고    scopus 로고
    • New unconditionally stable difference schemes for the solution of multidimensional telegraphic equations
    • Mohanty R.K. New unconditionally stable difference schemes for the solution of multidimensional telegraphic equations. Int. J. Comput. Math. 86 (2009) 2061-2071
    • (2009) Int. J. Comput. Math. , vol.86 , pp. 2061-2071
    • Mohanty, R.K.1
  • 8
    • 63449140298 scopus 로고    scopus 로고
    • An unconditionally stable spline difference scheme of Oek2 t h4T for solving the second-order 1D linear hyperbolic equation
    • Liu H.W., and Liu L.B. An unconditionally stable spline difference scheme of Oek2 t h4T for solving the second-order 1D linear hyperbolic equation. Math. Comput. Model. 49 (2009) 1985-1993
    • (2009) Math. Comput. Model. , vol.49 , pp. 1985-1993
    • Liu, H.W.1    Liu, L.B.2
  • 9
    • 34247184613 scopus 로고    scopus 로고
    • Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation
    • Gao F., and Chi C.M. Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187 (2007) 1272-1276
    • (2007) Appl. Math. Comput. , vol.187 , pp. 1272-1276
    • Gao, F.1    Chi, C.M.2
  • 10
    • 62949102686 scopus 로고    scopus 로고
    • A semi-discretization method based on quartic splines for solving one-space-dimensional hyperbolic equations
    • Liu H.W., Liu L.B., and Chen Y.P. A semi-discretization method based on quartic splines for solving one-space-dimensional hyperbolic equations. Appl. Math. Comput. 210 (2009) 508-514
    • (2009) Appl. Math. Comput. , vol.210 , pp. 508-514
    • Liu, H.W.1    Liu, L.B.2    Chen, Y.P.3
  • 11
    • 0032628859 scopus 로고    scopus 로고
    • Generalized trapezoidal formulas for parabolic equations
    • Chawla M., Al-Zanaidi M.A., and Evans D.J. Generalized trapezoidal formulas for parabolic equations. Int. J. Comput. Math. 70 (1998) 429-443
    • (1998) Int. J. Comput. Math. , vol.70 , pp. 429-443
    • Chawla, M.1    Al-Zanaidi, M.A.2    Evans, D.J.3
  • 12
    • 0030285138 scopus 로고    scopus 로고
    • A quartic C3-spline collocation method for solving secondorder initial value problems
    • Sallam S., and Karaballi A.A. A quartic C3-spline collocation method for solving secondorder initial value problems. J. Comput. Appl. Math. 75 (1996) 295-304
    • (1996) J. Comput. Appl. Math. , vol.75 , pp. 295-304
    • Sallam, S.1    Karaballi, A.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.