-
1
-
-
0347975059
-
An explicit difference method for the wave equation with extended stability range
-
Twizell E.H. An explicit difference method for the wave equation with extended stability range. BIT 19 (1979) 378-383
-
(1979)
BIT
, vol.19
, pp. 378-383
-
-
Twizell, E.H.1
-
2
-
-
0030216940
-
On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients
-
Mohanty R.K., Jain M.K., and George K. On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients. J. Comput. Appl. Math. 72 (1996) 421-431
-
(1996)
J. Comput. Appl. Math.
, vol.72
, pp. 421-431
-
-
Mohanty, R.K.1
Jain, M.K.2
George, K.3
-
3
-
-
84966238003
-
A note on the operator compact implicit method for the wave equation
-
Ciment M., and Leventhal S.H. A note on the operator compact implicit method for the wave equation. Math. Comput. 32 (1978) 143-147
-
(1978)
Math. Comput.
, vol.32
, pp. 143-147
-
-
Ciment, M.1
Leventhal, S.H.2
-
4
-
-
0035500142
-
An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation
-
Mohanty R.K., and Jain M.K. An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation. Numer. Methods Partial Diff. Eq. 17 (2001) 684-688
-
(2001)
Numer. Methods Partial Diff. Eq.
, vol.17
, pp. 684-688
-
-
Mohanty, R.K.1
Jain, M.K.2
-
5
-
-
0942302128
-
An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensional
-
Mohanty R.K., Jain M.K., and Arora U. An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensional. Int. J. Comput. Math. 79 (2002) 133-142
-
(2002)
Int. J. Comput. Math.
, vol.79
, pp. 133-142
-
-
Mohanty, R.K.1
Jain, M.K.2
Arora, U.3
-
6
-
-
0942300277
-
An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation
-
Mohanty R.K. An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation. Appl. Math. Lett. 17 (2004) 101-105
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 101-105
-
-
Mohanty, R.K.1
-
7
-
-
74849107653
-
New unconditionally stable difference schemes for the solution of multidimensional telegraphic equations
-
Mohanty R.K. New unconditionally stable difference schemes for the solution of multidimensional telegraphic equations. Int. J. Comput. Math. 86 (2009) 2061-2071
-
(2009)
Int. J. Comput. Math.
, vol.86
, pp. 2061-2071
-
-
Mohanty, R.K.1
-
8
-
-
63449140298
-
An unconditionally stable spline difference scheme of Oek2 t h4T for solving the second-order 1D linear hyperbolic equation
-
Liu H.W., and Liu L.B. An unconditionally stable spline difference scheme of Oek2 t h4T for solving the second-order 1D linear hyperbolic equation. Math. Comput. Model. 49 (2009) 1985-1993
-
(2009)
Math. Comput. Model.
, vol.49
, pp. 1985-1993
-
-
Liu, H.W.1
Liu, L.B.2
-
9
-
-
34247184613
-
Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation
-
Gao F., and Chi C.M. Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187 (2007) 1272-1276
-
(2007)
Appl. Math. Comput.
, vol.187
, pp. 1272-1276
-
-
Gao, F.1
Chi, C.M.2
-
10
-
-
62949102686
-
A semi-discretization method based on quartic splines for solving one-space-dimensional hyperbolic equations
-
Liu H.W., Liu L.B., and Chen Y.P. A semi-discretization method based on quartic splines for solving one-space-dimensional hyperbolic equations. Appl. Math. Comput. 210 (2009) 508-514
-
(2009)
Appl. Math. Comput.
, vol.210
, pp. 508-514
-
-
Liu, H.W.1
Liu, L.B.2
Chen, Y.P.3
-
12
-
-
0030285138
-
A quartic C3-spline collocation method for solving secondorder initial value problems
-
Sallam S., and Karaballi A.A. A quartic C3-spline collocation method for solving secondorder initial value problems. J. Comput. Appl. Math. 75 (1996) 295-304
-
(1996)
J. Comput. Appl. Math.
, vol.75
, pp. 295-304
-
-
Sallam, S.1
Karaballi, A.A.2
|