메뉴 건너뛰기




Volumn 72, Issue 2, 1996, Pages 421-431

On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients

Author keywords

Difference method; Hyperbolic equation; Linear stability; Maximum absolute errors; Nonlinear wave equation; Polar coordinates

Indexed keywords

APPROXIMATION THEORY; BOUNDARY CONDITIONS; CONVERGENCE OF NUMERICAL METHODS; DIFFERENCE EQUATIONS; ERROR ANALYSIS; INTEGRATION;

EID: 0030216940     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/0377-0427(96)00011-8     Document Type: Article
Times cited : (80)

References (8)
  • 1
    • 84949795680 scopus 로고
    • Higher order compact implicit schemes for the wave equation
    • M. Ciment and S.H. Leventhal, Higher order compact implicit schemes for the wave equation, Math. Comp. 29 (1975) 985-994.
    • (1975) Math. Comp. , vol.29 , pp. 985-994
    • Ciment, M.1    Leventhal, S.H.2
  • 2
    • 84966238003 scopus 로고
    • A note on the operator compact implicit method for the wave equation
    • M. Ciment and S.H. Leventhal, A note on the operator compact implicit method for the wave equation, Math. Comp. 32 (1978) 143-147.
    • (1978) Math. Comp. , vol.32 , pp. 143-147
    • Ciment, M.1    Leventhal, S.H.2
  • 3
    • 0042021744 scopus 로고
    • Approximate solution of initial boundary wave equation problems by boundary value techniques
    • D. Greenspan, Approximate solution of initial boundary wave equation problems by boundary value techniques, Comm. ACM 11 (1968) 760-763.
    • (1968) Comm. ACM , vol.11 , pp. 760-763
    • Greenspan, D.1
  • 4
    • 84985305546 scopus 로고
    • Fourth order difference methods for the system of 2-D nonlinear elliptic partial differential equations
    • M.K. Jain, R.K. Jain and R.K. Mohanty, Fourth order difference methods for the system of 2-D nonlinear elliptic partial differential equations, Numer. Methods Partial Differential Equations 7 (1991) 227-244.
    • (1991) Numer. Methods Partial Differential Equations , vol.7 , pp. 227-244
    • Jain, M.K.1    Jain, R.K.2    Mohanty, R.K.3
  • 5
    • 0042021742 scopus 로고
    • The numerical solution of the two-dimensional unsteady Navier-Stokes equations using fourth order difference method
    • M.K. Jain, R.K. Jain and R.K. Mohanty, The numerical solution of the two-dimensional unsteady Navier-Stokes equations using fourth order difference method, Internat. J. Comput. Math. 39 (1991) 125-134.
    • (1991) Internat. J. Comput. Math. , vol.39 , pp. 125-134
    • Jain, M.K.1    Jain, R.K.2    Mohanty, R.K.3
  • 6
    • 0042021743 scopus 로고
    • High order difference methods for the system of one-dimensional second order hyperbolic equations with nonlinear first derivative terms
    • M.K. Jain, R.K. Jain and R.K. Mohanty, High order difference methods for the system of one-dimensional second order hyperbolic equations with nonlinear first derivative terms, J. Mat. Phy. Sci. 26 (1992) 401-411.
    • (1992) J. Mat. Phy. Sci. , vol.26 , pp. 401-411
    • Jain, M.K.1    Jain, R.K.2    Mohanty, R.K.3
  • 7
    • 0042535668 scopus 로고
    • Fourth order finite difference methods for the system of 2-D nonlinear elliptic equations with variable coefficients
    • R.K. Mohanty, Fourth order finite difference methods for the system of 2-D nonlinear elliptic equations with variable coefficients, Internat. J. Comput. Math. 46 (1992) 195-206.
    • (1992) Internat. J. Comput. Math. , vol.46 , pp. 195-206
    • Mohanty, R.K.1
  • 8
    • 0042522622 scopus 로고
    • Analytical linear stability criteria for the leap-frog, Dufort-Frankel method
    • B.C. Roisin, Analytical linear stability criteria for the leap-frog, Dufort-Frankel method, J. Comput. Phys. 53 (1984) 227-239.
    • (1984) J. Comput. Phys. , vol.53 , pp. 227-239
    • Roisin, B.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.