-
1
-
-
0008754013
-
High order P-stable formulae for numerical integration of periodic initial value problems
-
J.R. Cash, High order P-stable formulae for numerical integration of periodic initial value problems, Numer. Math. 37 (1981) 355-370.
-
(1981)
Numer. Math.
, vol.37
, pp. 355-370
-
-
Cash, J.R.1
-
2
-
-
0019697924
-
Two-step fourth order P-stable methods for second-order differential equation
-
M.M. Chawla, Two-step fourth order P-stable methods for second-order differential equation, BIT 21 (1981) 190-193.
-
(1981)
BIT
, vol.21
, pp. 190-193
-
-
Chawla, M.M.1
-
3
-
-
0021295439
-
Numerov made explicit has better stability
-
M.M. Chawla, Numerov made explicit has better stability, BIT 24 (1984) 117-118.
-
(1984)
BIT
, vol.24
, pp. 117-118
-
-
Chawla, M.M.1
-
4
-
-
0021578695
-
A noumerov-type method with minimal phase-lag for the integration of second-order initial-value problems
-
M.M. Chawla and P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of second-order initial-value problems, J. Comput. Appl. Math. 11 (1984) 277-281.
-
(1984)
J. Comput. Appl. Math.
, vol.11
, pp. 277-281
-
-
Chawla, M.M.1
Rao, P.S.2
-
5
-
-
38249030052
-
Characterization of a class of P-stable methods for differential equations of second order
-
J.P. Coleman, Characterization of a class of P-stable methods for differential equations of second order, J. Comput. Appl. Math. 22 (1988) 137-141.
-
(1988)
J. Comput. Appl. Math.
, vol.22
, pp. 137-141
-
-
Coleman, J.P.1
-
6
-
-
0001330331
-
Numerical methods for y″ = f(x, y) via rational approximations for the cosine
-
J.P. Coleman, Numerical methods for y″ = f(x, y) via rational approximations for the cosine, IMA J. Numer. Anal. 9 (1989) 145-165.
-
(1989)
IMA J. Numer. Anal.
, vol.9
, pp. 145-165
-
-
Coleman, J.P.1
-
7
-
-
38249020232
-
On a class of multistep method with strong contractivity properties
-
P. de Oliveira, On a class of multistep method with strong contractivity properties, J. Comput. Appl. Math. 30 (1992) 11-19.
-
(1992)
J. Comput. Appl. Math.
, vol.30
, pp. 11-19
-
-
De Oliveira, P.1
-
10
-
-
0004317158
-
-
Springer, Berlin
-
E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations, Nonstiff Problems (Springer, Berlin, 1987).
-
(1987)
Solving Ordinary Differential Equations, Nonstiff Problems
-
-
Hairer, E.1
Norsett, S.P.2
Wanner, G.3
-
11
-
-
0000657979
-
Stability of collocation methods for the numerical solution of y″ = f(x, y)
-
L. Kramarz, Stability of collocation methods for the numerical solution of y″ = f(x, y), BIT 20 (1980) 215-222.
-
(1980)
BIT
, vol.20
, pp. 215-222
-
-
Kramarz, L.1
-
13
-
-
77958409581
-
Symmetric multistep methods for periodic initial value problems
-
J.D. Lambert and I.A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl. 18 (1976) 189-202.
-
(1976)
J. Inst. Math. Appl.
, vol.18
, pp. 189-202
-
-
Lambert, J.D.1
Watson, I.A.2
-
14
-
-
0003046437
-
An introduction to the application of spline functions to initial value problems
-
T.N.E. Greville, Ed., Academic Press, New York
-
F.R. Loscalzo, An introduction to the application of spline functions to initial value problems, in: T.N.E. Greville, Ed., Theory and Applications of Spline Functions (Academic Press, New York, 1969) 37-64.
-
(1969)
Theory and Applications of Spline Functions
, pp. 37-64
-
-
Loscalzo, F.R.1
-
15
-
-
0001291530
-
Chawla-Numerov method revisited
-
M. Meneguette, Chawla-Numerov method revisited, J. Comput. Appl. Math. 36 (1991) 247-250.
-
(1991)
J. Comput. Appl. Math.
, vol.36
, pp. 247-250
-
-
Meneguette, M.1
-
16
-
-
84968481505
-
(2) = f(x, y) with spline functions
-
(2) = f(x, y) with spline functions, Math. Comp. 27 (1973) 807-816.
-
(1973)
Math. Comp.
, vol.27
, pp. 807-816
-
-
Micula, Gh.1
-
17
-
-
0002174642
-
Splines and collocation for ordinary initial value problems
-
S.P. Singh et al. Eds., Reidel, Dordrecht
-
S.P. Norsett, Splines and collocation for ordinary initial value problems, in: S.P. Singh et al. Eds., Approximation Theory and Spline Functions (Reidel, Dordrecht, 1984) 397-417.
-
(1984)
Approximation Theory and Spline Functions
, pp. 397-417
-
-
Norsett, S.P.1
-
18
-
-
0041934483
-
Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems
-
T.E. Simos, Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems, J. Comput. Math. Appl. 26 (1993) 7-15.
-
(1993)
J. Comput. Math. Appl.
, vol.26
, pp. 7-15
-
-
Simos, T.E.1
-
19
-
-
0042936180
-
A family of two-step almost P-stable methods with phase-lag of order infinity for the numerical integration of second-order periodic initial-value problems
-
T.E. Simos, A family of two-step almost P-stable methods with phase-lag of order infinity for the numerical integration of second-order periodic initial-value problems, Japan. J. Indust. Appl. Math. 10 (1993) 289-297.
-
(1993)
Japan. J. Indust. Appl. Math.
, vol.10
, pp. 289-297
-
-
Simos, T.E.1
-
20
-
-
0027702560
-
Embedded Runge-Kutta methods for periodic initial-value problems
-
T.E. Simos, Embedded Runge-Kutta methods for periodic initial-value problems, Math. Comput. Simulation 35 (1993) 387-395.
-
(1993)
Math. Comput. Simulation
, vol.35
, pp. 387-395
-
-
Simos, T.E.1
-
21
-
-
0021382438
-
Multiderivative methods for periodic initial problems
-
E.H. Twizell and A.Q. Khaliq, Multiderivative methods for periodic initial problems, SIAM J. Numer. Anal. 21 (1984) 111-122.
-
(1984)
SIAM J. Numer. Anal.
, vol.21
, pp. 111-122
-
-
Twizell, E.H.1
Khaliq, A.Q.2
-
22
-
-
0009963675
-
Predictor-corrector methods for periodic second-order initial value problems
-
P.J. van der Houwen and B.P. Sommeijer, Predictor-corrector methods for periodic second-order initial value problems, IMA J. Numer. Anal. 7 (1987) 407-422.
-
(1987)
IMA J. Numer. Anal.
, vol.7
, pp. 407-422
-
-
Van Der Houwen, P.J.1
Sommeijer, B.P.2
|