J. N. Nigam 2001 Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate Journal of Applied Microbiology 90 208 215 10.1046/j.1365-2672. 2001.01234.x 1:CAS:528:DC%2BD3MXhsFGrtrw%3D
Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus
P. J. Slininger R. J. Bothast J. E. Van Cauwenberge, et al. 1982 Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus Biotechnology and Bioengineering 14 37 384
Y. Tang M. An K. Liu, et al. 2006 Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7 Process Biochemistry 41 4 909 914 10.1016/j.procbio.2005. 09.008 1:CAS:528:DC%2BD28XhvVWms70%3D
C. A. Batt S. Carvallo D. D. Easson, et al. 1986 Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae Biotechnology and Bioengineering 28 549 553 10.1002/bit.260280411 1:CAS:528:DyaL28XktVehsLc%3D
H. Alper J. Moxley E. Nevoigt, et al. 2006 Engineering yeast transcription machinery for improved ethanol tolerance and production Science 314 8 1565 1568 10.1126/science.1131969 1:CAS:528:DC%2BD28Xht1OntL%2FP
Characterization of hybrids obtained by protoplast fusion, between Pachysolen tannophilus and Saccharomyces cerevisiae
10.1007/BF00170435 1:CAS:528:DyaK2cXitFahur4%3D
H. Heluane J. F. T. Spencer D. Spencer, et al. 1993 Characterization of hybrids obtained by protoplast fusion, between Pachysolen tannophilus and Saccharomyces cerevisiae Applied Microbiology and Biotechnology 40 98 100 10.1007/BF00170435 1:CAS:528:DyaK2cXitFahur4%3D
H. Alper Y.-S. Jin J. F. Moxley, et al. 2005 Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli Metabolic Engineering 7 155 164 10.1016/j.ymben.2004.12.003 1:CAS:528: DC%2BD2MXktVKgtbg%3D
Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets
10.1038/nbt1083 1:CAS:528:DC%2BD2MXjvV2ntb0%3D
H. Alper K. Miyaoku G. Stephanopoulos 2005 Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets Nature Biotechnology 23 612 616 10.1038/nbt1083 1:CAS:528:DC%2BD2MXjvV2ntb0%3D
H. Alper G. Stephanopoulos 2007 Global transcription machinery engineering: A new approach for improving cellular phenotype Metabolic Engineering 9 258 267 10.1016/j.ymben.2006.12.002 1:CAS:528:DC%2BD2sXlvFSisr0%3D
H. Alper J. Moxley E. G. R. Nevoigt, et al. 2006 Supporting online material for engineering yeast transcription machinery for improved ethanol tolerance and production Science 314 1565 10.1126/science.1131969 1:CAS:528:DC%2BD28Xht1OntL%2FP
A. Hemsley N. Arnheim M. D. Toney, et al. 1989 A simple method for site-directed mutagenesis using the polymerase chain reaction Nucleic Acids Research 17 6545 6551 10.1093/nar/17.16.6545 1:CAS:528:DyaL1MXls1yltrg%3D
Studies on the transformation of intact yeast cells by the LiAc/SSDNA/PEG procedure
10.1002/yea.320110408
H. Robert I. Schidst R. Andrew, et al. 1995 Studies on the transformation of intact yeast cells by the LiAc/SSDNA/PEG procedure Yeast (Chichester, England) 11 355 360 10.1002/yea.320110408
Xylitol production by recombinant Saccharomyces cerevisiae
1:CAS:528:DyaK3sXht1ejs7g%3D
J. Hallborn M. Walfidsson U. Airaksinen, et al. 1991 Xylitol production by recombinant Saccharomyces cerevisiae Bio Technology 9 1090 1095 1:CAS:528:DyaK3sXht1ejs7g%3D