메뉴 건너뛰기




Volumn 59, Issue 7, 2008, Pages 1783-1789

Fault identification of Tennessee Eastman process based on FS-KPCA

Author keywords

Fault identification; Feature sample extracting; Gradient arithmetic; Kernel PCA; TE process

Indexed keywords

ELECTRIC FAULT LOCATION; EXTRACTION; FEATURE EXTRACTION; FINANCIAL DATA PROCESSING; MATRIX ALGEBRA; PROCESS ENGINEERING;

EID: 48049091561     PISSN: 04381157     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (13)

References (15)
  • 1
    • 29244459165 scopus 로고    scopus 로고
    • Double moving window MPCA for online adaptive batch monitoring
    • Zhao L J, Cai T Y, Wang G. Double moving window MPCA for online adaptive batch monitoring. Chin. J. Chem. Eng., 2005, 13(5): 649-655
    • (2005) Chin. J. Chem. Eng. , vol.13 , Issue.5 , pp. 649-655
    • Zhao, L.J.1    Cai, T.Y.2    Wang, G.3
  • 2
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate statistical process control methods for monitoring and diagnosing process and product performance
    • Kourtit Mac, Gregor J F. Multivariate statistical process control methods for monitoring and diagnosing process and product performance. Quality Technology, 1996, 28: 409-428
    • (1996) Quality Technology , vol.28 , pp. 409-428
    • Mac, K.1    Gregor, J.F.2
  • 3
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi B R. Multiscale PCA with application to multivariate statistical process monitoring. American Institute of Chemical Engineering Journal, 1998, 44: 1596-1610
    • (1998) American Institute of Chemical Engineering Journal , vol.44 , pp. 1596-1610
    • Bakshi, B.R.1
  • 4
    • 0026113980 scopus 로고
    • Non-linear principal component analysis using auto-associative neural networks
    • Kramer M A. Non-linear principal component analysis using auto-associative neural networks. AIChE Journal, 1991, 37: 233-243
    • (1991) AIChE Journal , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 5
    • 0034334827 scopus 로고    scopus 로고
    • Nonlinear principal components analysis with application to process fault detection
    • Jia F, Martin E B, Morris A J. Nonlinear principal components analysis with application to process fault detection. International Journal of Systems Science, 2001, 31: 1473-1487
    • (2001) International Journal of Systems Science , vol.31 , pp. 1473-1487
    • Jia, F.1    Martin, E.B.2    Morris, A.J.3
  • 6
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis based on principal curves and neural networks
    • Dong D, McAvoy T J. Nonlinear principal component analysis based on principal curves and neural networks. Computers and Chemical Engineering, 1996, 20(1): 65-78
    • (1996) Computers and Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 7
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B, Smola A J, Muller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10: 1299-1319
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Muller, K.3
  • 8
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee J M, Yoo C K, Lee I B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering, 2004, 28: 1837-1847
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1837-1847
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 9
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science, 2004, 59: 5897-5908
    • (2004) Chemical Engineering Science , vol.59 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.B.2
  • 10
    • 33645900880 scopus 로고    scopus 로고
    • Monitoring of SBR process using kernel principal component analysis
    • Fan Liping, Yu Haibin, Yuan Decheng. Monitoring of SBR process using kernel principal component analysis. Chinese Journal of Scientific Instrument, 2006, 27(3): 249-253
    • (2006) Chinese Journal of Scientific Instrument , vol.27 , Issue.3 , pp. 249-253
    • Fan, L.1    Yu, H.2    Yuan, D.3
  • 11
    • 31844449819 scopus 로고    scopus 로고
    • KPCA based on feature samples for fault detection
    • Fan Yugang, Li Ping, Song Zhihuan. KPCA based on feature samples for fault detection. Control and Decision, 2005, 20(12): 1415-1418
    • (2005) Control and Decision , vol.20 , Issue.12 , pp. 1415-1418
    • Fan, Y.1    Li, P.2    Song, Z.3
  • 12
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho J H, Lee J M, Choi S W. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science, 2005, 60(1): 279-288
    • (2005) Chemical Engineering Science , vol.60 , Issue.1 , pp. 279-288
    • Cho, J.H.1    Lee, J.M.2    Choi, S.W.3
  • 13
    • 0242383468 scopus 로고    scopus 로고
    • Feature vector selection and projection using kernels
    • Baudat G, Anouar F. Feature vector selection and projection using kernels. Neurocomputing, 2003, 55: 21-38
    • (2003) Neurocomputing , vol.55 , pp. 21-38
    • Baudat, G.1    Anouar, F.2
  • 14
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman P R, Georgakisc. Plant-wide control of the Tennessee Eastman problem. Computer and Chemical Engineering, 1995, 19: 321-331
    • (1995) Computer and Chemical Engineering , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakisc2
  • 15
    • 0037084628 scopus 로고    scopus 로고
    • Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
    • Manabu Kano, Koji Nagao. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Computers and Chemical Engineering, 2002, 26: 161-174
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 161-174
    • Kano, M.1    Nagao, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.