-
1
-
-
29244459165
-
Double moving window MPCA for online adaptive batch monitoring
-
Zhao L J, Cai T Y, Wang G. Double moving window MPCA for online adaptive batch monitoring. Chin. J. Chem. Eng., 2005, 13(5): 649-655
-
(2005)
Chin. J. Chem. Eng.
, vol.13
, Issue.5
, pp. 649-655
-
-
Zhao, L.J.1
Cai, T.Y.2
Wang, G.3
-
2
-
-
0030262558
-
Multivariate statistical process control methods for monitoring and diagnosing process and product performance
-
Kourtit Mac, Gregor J F. Multivariate statistical process control methods for monitoring and diagnosing process and product performance. Quality Technology, 1996, 28: 409-428
-
(1996)
Quality Technology
, vol.28
, pp. 409-428
-
-
Mac, K.1
Gregor, J.F.2
-
3
-
-
0032118892
-
Multiscale PCA with application to multivariate statistical process monitoring
-
Bakshi B R. Multiscale PCA with application to multivariate statistical process monitoring. American Institute of Chemical Engineering Journal, 1998, 44: 1596-1610
-
(1998)
American Institute of Chemical Engineering Journal
, vol.44
, pp. 1596-1610
-
-
Bakshi, B.R.1
-
4
-
-
0026113980
-
Non-linear principal component analysis using auto-associative neural networks
-
Kramer M A. Non-linear principal component analysis using auto-associative neural networks. AIChE Journal, 1991, 37: 233-243
-
(1991)
AIChE Journal
, vol.37
, pp. 233-243
-
-
Kramer, M.A.1
-
5
-
-
0034334827
-
Nonlinear principal components analysis with application to process fault detection
-
Jia F, Martin E B, Morris A J. Nonlinear principal components analysis with application to process fault detection. International Journal of Systems Science, 2001, 31: 1473-1487
-
(2001)
International Journal of Systems Science
, vol.31
, pp. 1473-1487
-
-
Jia, F.1
Martin, E.B.2
Morris, A.J.3
-
6
-
-
0043015539
-
Nonlinear principal component analysis based on principal curves and neural networks
-
Dong D, McAvoy T J. Nonlinear principal component analysis based on principal curves and neural networks. Computers and Chemical Engineering, 1996, 20(1): 65-78
-
(1996)
Computers and Chemical Engineering
, vol.20
, Issue.1
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
7
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf B, Smola A J, Muller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10: 1299-1319
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Muller, K.3
-
8
-
-
2442495227
-
Fault detection of batch processes using multiway kernel principal component analysis
-
Lee J M, Yoo C K, Lee I B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering, 2004, 28: 1837-1847
-
(2004)
Computers and Chemical Engineering
, vol.28
, pp. 1837-1847
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
9
-
-
10044259622
-
Nonlinear dynamic process monitoring based on dynamic kernel PCA
-
Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science, 2004, 59: 5897-5908
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 5897-5908
-
-
Choi, S.W.1
Lee, I.B.2
-
10
-
-
33645900880
-
Monitoring of SBR process using kernel principal component analysis
-
Fan Liping, Yu Haibin, Yuan Decheng. Monitoring of SBR process using kernel principal component analysis. Chinese Journal of Scientific Instrument, 2006, 27(3): 249-253
-
(2006)
Chinese Journal of Scientific Instrument
, vol.27
, Issue.3
, pp. 249-253
-
-
Fan, L.1
Yu, H.2
Yuan, D.3
-
11
-
-
31844449819
-
KPCA based on feature samples for fault detection
-
Fan Yugang, Li Ping, Song Zhihuan. KPCA based on feature samples for fault detection. Control and Decision, 2005, 20(12): 1415-1418
-
(2005)
Control and Decision
, vol.20
, Issue.12
, pp. 1415-1418
-
-
Fan, Y.1
Li, P.2
Song, Z.3
-
12
-
-
10244238854
-
Fault identification for process monitoring using kernel principal component analysis
-
Cho J H, Lee J M, Choi S W. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science, 2005, 60(1): 279-288
-
(2005)
Chemical Engineering Science
, vol.60
, Issue.1
, pp. 279-288
-
-
Cho, J.H.1
Lee, J.M.2
Choi, S.W.3
-
13
-
-
0242383468
-
Feature vector selection and projection using kernels
-
Baudat G, Anouar F. Feature vector selection and projection using kernels. Neurocomputing, 2003, 55: 21-38
-
(2003)
Neurocomputing
, vol.55
, pp. 21-38
-
-
Baudat, G.1
Anouar, F.2
-
14
-
-
0029256836
-
Plant-wide control of the Tennessee Eastman problem
-
Lyman P R, Georgakisc. Plant-wide control of the Tennessee Eastman problem. Computer and Chemical Engineering, 1995, 19: 321-331
-
(1995)
Computer and Chemical Engineering
, vol.19
, pp. 321-331
-
-
Lyman, P.R.1
Georgakisc2
-
15
-
-
0037084628
-
Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
-
Manabu Kano, Koji Nagao. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Computers and Chemical Engineering, 2002, 26: 161-174
-
(2002)
Computers and Chemical Engineering
, vol.26
, pp. 161-174
-
-
Kano, M.1
Nagao, K.2
|