메뉴 건너뛰기




Volumn 75, Issue 5, 2010, Pages 1450-1457

Highly efficient methyl ketone synthesis with photoactivated acetone and olefins assisted by Mg(II)-exchanged zeolite y

Author keywords

[No Author keywords available]

Indexed keywords

AB INITIO MOLECULAR ORBITAL CALCULATION; ADSORPTION EXPERIMENT; C-C COUPLING; CARBONYL MOIETY; CHARGE POLARIZATION; ELECTROSTATIC INTERACTIONS; HIGH SELECTIVITY; HIGH YIELD; HYDROGEN ABSTRACTION; METHYL KETONES; PHOTO-ACTIVATED; PHOTO-IRRADIATION; PHOTOREACTIONS; RADICAL ADDITION; RADICAL FORMATION; ROOM TEMPERATURE; ZEOLITE PORES; ZEOLITE-Y;

EID: 77949279285     PISSN: 00223263     EISSN: 15206904     Source Type: Journal    
DOI: 10.1021/jo902321f     Document Type: Article
Times cited : (19)

References (54)
  • 2
    • 0000676907 scopus 로고
    • Trast, B. M, Fleming, I, Ley, S. V, Eds, Pcrgamon: Oxford, UK
    • b) Ley, S. V.; Mladin, A. In Comprehensive Organic Synthesis; Trast, B. M., Fleming, I., Ley, S. V., Eds.; Pcrgamon: Oxford, UK, 1991; Vol. 7, p 251.
    • (1991) Comprehensive Organic Synthesis , vol.7 , pp. 251
    • Ley, S.V.1    Mladin, A.2
  • 22
    • 0000250441 scopus 로고    scopus 로고
    • d) Remko, M. Mol. Phys. 1997, 91, 929-936.
    • (1997) Mol. Phys , vol.91 , pp. 929-936
    • Remko, M.1
  • 25
    • 77949307360 scopus 로고    scopus 로고
    • Frisch,M. J.;Trucks,G. W, Schlegel, H. B, Scuseria, G.E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C; Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Ke
    • a)Frisch,M. J.;Trucks,G. W.; Schlegel, H. B.; Scuseria, G.E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc., Wallingford, CT, 2004.
  • 26
    • 77949288858 scopus 로고    scopus 로고
    • Dennington, R, II; Keith, T, Millam, J, Eppinnett, K, Hovell, W. L, Gilliland, R. Gauss View, Version 3.09; Semichem, Inc, Shawnee Mission, KS, 2003
    • b) Dennington, R., II; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. Gauss View, Version 3.09; Semichem, Inc., Shawnee Mission, KS, 2003.
  • 31
    • 0000315446 scopus 로고    scopus 로고
    • Phosphorescence analysis usually provides important information on the nature of the excited-state carbonyl compounds within zeolite (ref 11, However, in the present case, the analysis does not provide clear information on the nature of excited-state acetone within MgY in the absence and presence of water. Figure S2 (Supporting Information) shows phosphorescence spectra of acetone measured at 77 K. In a diethyl ether/2-propanol glass, a distinctive emission assigned to acetone phosphorescence appears at 455 nm: Borkman, R. F, Kearns, D. R. J. Chem. Phys. 1966, 44, 945-949
    • Phosphorescence analysis usually provides important information on the nature of the excited-state carbonyl compounds within zeolite (ref 11). However, in the present case, the analysis does not provide clear information on the nature of excited-state acetone within MgY in the absence and presence of water. Figure S2 (Supporting Information) shows phosphorescence spectra of acetone measured at 77 K. In a diethyl ether/2-propanol glass, a distinctive emission assigned to acetone phosphorescence appears at 455 nm: Borkman, R. F.; Kearns, D. R. J. Chem. Phys. 1966, 44, 945-949.
  • 32
    • 0025227712 scopus 로고    scopus 로고
    • In contrast, acetone adsorbed on MgY shows a red-shifted emission at 493 nm. As reported in the following, the red-shifted emission is assigned to the phosphorescence of the protonated acetone formed by a reaction with acidic hydroxy! groups on zeolite: Bosacek, V.; Kubelkova, L. Zeolites 1990, 10, 64-65.
    • In contrast, acetone adsorbed on MgY shows a red-shifted emission at 493 nm. As reported in the following, the red-shifted emission is assigned to the phosphorescence of the protonated acetone formed by a reaction with acidic hydroxy! groups on zeolite: Bosacek, V.; Kubelkova, L. Zeolites 1990, 10, 64-65.
  • 33
    • 77949287684 scopus 로고    scopus 로고
    • A similar emission red shift is observed on highly acidic HY, In contrast, no emission red shift is observed on less acidic CsY: Okamoto, S.; Nishiguchi, H.; Anpo, M. Chem. Lett. 1992, 1009-1012.
    • A similar emission red shift is observed on highly acidic HY, In contrast, no emission red shift is observed on less acidic CsY: Okamoto, S.; Nishiguchi, H.; Anpo, M. Chem. Lett. 1992, 1009-1012.
  • 34
    • 0000662129 scopus 로고    scopus 로고
    • max= 467 nm). This is probably because, as reported in the following, hydration of zeolite weakens its acidity and suppresses the protonation of acetone: Ward, J. J. Phys. Chem. 1968, 72, 4211-4213.
    • max= 467 nm). This is probably because, as reported in the following, hydration of zeolite weakens its acidity and suppresses the protonation of acetone: Ward, J. J. Phys. Chem. 1968, 72, 4211-4213.
  • 35
    • 77949287533 scopus 로고    scopus 로고
    • These indicate that the zeolite acidity strongly affects the acetone phosphorescence. A clear explanation as to how the cation affects the nature of the excited acetone within zeolite in the absence and presence of water, therefore, cannot be made
    • These indicate that the zeolite acidity strongly affects the acetone phosphorescence. A clear explanation as to how the cation affects the nature of the excited acetone within zeolite in the absence and presence of water, therefore, cannot be made.
  • 37
  • 41
    • 37049123566 scopus 로고    scopus 로고
    • Adsorption of substrates onto the solid surface depends on the affinity of substrates for the surface and the solubility of substrates in solvents: Wright, E. H. M, Pratt, N. C. J. Chem. Soc, Faraday Trans. 1 1974, 70, 1461-1471
    • Adsorption of substrates onto the solid surface depends on the affinity of substrates for the surface and the solubility of substrates in solvents: Wright, E. H. M.; Pratt, N. C. J. Chem. Soc., Faraday Trans. 1 1974, 70, 1461-1471.
  • 42
    • 77949302887 scopus 로고    scopus 로고
    • In the present case, acetone/water mixture has a poor solubility of olefins and, hence, allows olefin adsorption onto zeolite. This is confirmed by adsorption experiments of 1 with MgY Figure S3; Supporting Information, the adsorption of 1 onto MgY in pure acetone is almost zero, but an increase in water content of the solution leads to an increase in the adsorption amount
    • In the present case, acetone/water mixture has a poor solubility of olefins and, hence, allows olefin adsorption onto zeolite. This is confirmed by adsorption experiments of 1 with MgY (Figure S3; Supporting Information): the adsorption of 1 onto MgY in pure acetone is almost zero, but an increase in water content of the solution leads to an increase in the adsorption amount.
  • 43
    • 77949277836 scopus 로고    scopus 로고
    • It must be noted that, as shown in Table 3 and Figure 3, there is no linear relationship between the methyl ketone yield enhancement and the size or the adsorption degree of olefins. This suggests that the electronic structure of olefins (reactivity with the radical I) is also the important factor for methyl ketone production as well as the size and adsorption degree of olefins.
    • It must be noted that, as shown in Table 3 and Figure 3, there is no linear relationship between the methyl ketone yield enhancement and the size or the adsorption degree of olefins. This suggests that the electronic structure of olefins (reactivity with the radical I) is also the important factor for methyl ketone production as well as the size and adsorption degree of olefins.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.