-
1
-
-
0003425043
-
-
Springer, Berlin
-
For a general review on chromium oxidations, see, e.g., G. Cainelli and G. Cardillo, Chromium Oxidants in Organic Chemistry (Springer, Berlin, 1984); S. V. Ley and A. Madin, in Comprehensive Organic Synthesis, B. M. Trost, I. Fleming, S. V. Ley, Eds. (Pergamon, Oxford, 1991), vol. 7, pp. 251-289
-
(1984)
Chromium Oxidants in Organic Chemistry
-
-
Cainelli, G.1
Cardillo, G.2
-
2
-
-
0000676907
-
-
B. M. Trost, I. Fleming, S. V. Ley, Eds. Pergamon, Oxford
-
For a general review on chromium oxidations, see, e.g., G. Cainelli and G. Cardillo, Chromium Oxidants in Organic Chemistry (Springer, Berlin, 1984); S. V. Ley and A. Madin, in Comprehensive Organic Synthesis, B. M. Trost, I. Fleming, S. V. Ley, Eds. (Pergamon, Oxford, 1991), vol. 7, pp. 251-289
-
(1991)
Comprehensive Organic Synthesis
, vol.7
, pp. 251-289
-
-
Ley, S.V.1
Madin, A.2
-
3
-
-
0032508584
-
-
For example, for a green route from cyctohexene to adipic acid, see K. Sato, M. Aoki, R. Noyori, Science 281, 1646 (1998)
-
(1998)
Science
, vol.281
, pp. 1646
-
-
Sato, K.1
Aoki, M.2
Noyori, R.3
-
4
-
-
0026418434
-
-
For a general discussion of atom economy in organic synthesis, see B. M. Trost, Science 254, 1471 (1991); Angew. Chem. Int. Ed. Engl. 34, 259 (1995)
-
(1991)
, vol.254
, pp. 1471
-
-
Trost, B.M.1
Science2
-
5
-
-
33750309194
-
-
For a general discussion of atom economy in organic synthesis, see B. M. Trost, Science 254, 1471 (1991); Angew. Chem. Int. Ed. Engl. 34, 259 (1995)
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 259
-
-
-
6
-
-
37049079825
-
-
The "activated" benzylic and allylic alcohols usually react faster than aliphatic alcohols. For catalytic oxidations of activated alcohols using dioxygen, see, e.g., J.-E. Bäckvall, R. L. Chowdhury, U. Karlsson, J. Chem. Soc. Chem. Commun. 1991, 473 (1991); K. P. Peterson and R. C. Larock, J. Org. Chem. 63, 3185 (1998)
-
(1991)
J. Chem. Soc. Chem. Commun.
, vol.1991
, pp. 473
-
-
Bäckvall, J.-E.1
Chowdhury, R.L.2
Karlsson, U.3
-
7
-
-
0001434584
-
-
The "activated" benzylic and allylic alcohols usually react faster than aliphatic alcohols. For catalytic oxidations of activated alcohols using dioxygen, see, e.g., J.-E. Bäckvall, R. L. Chowdhury, U. Karlsson, J. Chem. Soc. Chem. Commun. 1991, 473 (1991); K. P. Peterson and R. C. Larock, J. Org. Chem. 63, 3185 (1998)
-
(1998)
J. Org. Chem.
, vol.63
, pp. 3185
-
-
Peterson, K.P.1
Larock, R.C.2
-
8
-
-
0001625749
-
-
D. H. R. Barton, A. E. Bartell, D. T. Sawyer, Eds. Plenum, New York
-
In the Mukaiyama method, oxygen is used in combination with > 1 equiv of a reactive aldehyde, forming a peracid as the actual oxidant (usually in combination with a metal) and yielding 1 equiv of carboxylic acid as the coproduct. [T. Mukaiyama, in The Activation of Dioxygen and Homogeneous Catalytic Oxidation, D. H. R. Barton, A. E. Bartell, D. T. Sawyer, Eds. (Plenum, New York, 1993), pp. 133-146]
-
(1993)
The Activation of Dioxygen and Homogeneous Catalytic Oxidation
, pp. 133-146
-
-
Mukaiyama, T.1
-
9
-
-
0032514514
-
-
For aerobic oxidations with palladium compounds in toluene, see T. Nishimura, T. Onoue, K. Ohe, S. Uemura, Tetrahedron Lett. 39, 6011 (1998); for aerobic oxidations with palladium compounds in ethylene carbonate, see T. F. Blackburn and J. Schwartz, J. Chem. Soc. Chem. Commun. 1977, 157 (1977)
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 6011
-
-
Nishimura, T.1
Onoue, T.2
Ohe, K.3
Uemura, S.4
-
10
-
-
84943500387
-
-
For aerobic oxidations with palladium compounds in toluene, see T. Nishimura, T. Onoue, K. Ohe, S. Uemura, Tetrahedron Lett. 39, 6011 (1998); for aerobic oxidations with palladium compounds in ethylene carbonate, see T. F. Blackburn and J. Schwartz, J. Chem. Soc. Chem. Commun. 1977, 157 (1977)
-
(1977)
J. Chem. Soc. Chem. Commun.
, vol.1977
, pp. 157
-
-
Blackburn, T.F.1
Schwartz, J.2
-
11
-
-
0030460515
-
-
For aerobic oxidations with copper compounds in toluene, see I. E. Markó, P. R. Giles, M. Tsukazaki, S. M. Brown, C. J. Urch, Science 274, 2044 (1996)
-
(1996)
Science
, vol.274
, pp. 2044
-
-
Markó, I.E.1
Giles, P.R.2
Tsukazaki, M.3
Brown, S.M.4
Urch, C.J.5
-
12
-
-
33845281994
-
-
For aerobic oxidations with ruthenium compounds carried out in toluene, see, e.g., C. Bilgrien, S. Davis, R. S. Drago, J. Am. Chem. Soc. 109, 3786 (1987); R. Tang, S. E. Diamond, N. Neary, F. Mares, J. Chem Soc. Chem. Commun. 1978, 562 (1978); I. E. Markó et al., J. Am. Chem. Soc. 119, 12661 (1997). For aerobic oxidations with ruthenium compounds carried out in trifluorotoluene, see A. Hanyu, E. Takezawa, S. Sakaguchi, Y. Ishii, Tetrahedron Lett. 39, 5557 (1998). For aerobic oxidations with ruthenium compounds carried out in dichloromethane, see R. Lenz and S. V. Ley, J. Chem. Soc. Perkin Trans. 1 1997, 3291 (1997). For aerobic oxidations with ruthenium compounds carried out in chlorobenzene, see A. Dijkman, I. W. C. E. Arends, R. A. Sheldon, Chem. Commun. 1999, 1591 (1999)
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 3786
-
-
Bilgrien, C.1
Davis, S.2
Drago, R.S.3
-
13
-
-
37049091731
-
-
For aerobic oxidations with ruthenium compounds carried out in toluene, see, e.g., C. Bilgrien, S. Davis, R. S. Drago, J. Am. Chem. Soc. 109, 3786 (1987); R. Tang, S. E. Diamond, N. Neary, F. Mares, J. Chem Soc. Chem. Commun. 1978, 562 (1978); I. E. Markó et al., J. Am. Chem. Soc. 119, 12661 (1997). For aerobic oxidations with ruthenium compounds carried out in trifluorotoluene, see A. Hanyu, E. Takezawa, S. Sakaguchi, Y. Ishii, Tetrahedron Lett. 39, 5557 (1998). For aerobic oxidations with ruthenium compounds carried out in dichloromethane, see R. Lenz and S. V. Ley, J. Chem. Soc. Perkin Trans. 1 1997, 3291 (1997). For aerobic oxidations with ruthenium compounds carried out in chlorobenzene, see A. Dijkman, I. W. C. E. Arends, R. A. Sheldon, Chem. Commun. 1999, 1591 (1999)
-
(1978)
J. Chem Soc. Chem. Commun.
, vol.1978
, pp. 562
-
-
Tang, R.1
Diamond, S.E.2
Neary, N.3
Mares, F.4
-
14
-
-
33845281994
-
-
For aerobic oxidations with ruthenium compounds carried out in toluene, see, e.g., C. Bilgrien, S. Davis, R. S. Drago, J. Am. Chem. Soc. 109, 3786 (1987); R. Tang, S. E. Diamond, N. Neary, F. Mares, J. Chem Soc. Chem. Commun. 1978, 562 (1978); I. E. Markó et al., J. Am. Chem. Soc. 119, 12661 (1997). For aerobic oxidations with ruthenium compounds carried out in trifluorotoluene, see A. Hanyu, E. Takezawa, S. Sakaguchi, Y. Ishii, Tetrahedron Lett. 39, 5557 (1998). For aerobic oxidations with ruthenium compounds carried out in dichloromethane, see R. Lenz and S. V. Ley, J. Chem. Soc. Perkin Trans. 1 1997, 3291 (1997). For aerobic oxidations with ruthenium compounds carried out in chlorobenzene, see A. Dijkman, I. W. C. E. Arends, R. A. Sheldon, Chem. Commun. 1999, 1591 (1999)
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 12661
-
-
Markó, I.E.1
-
15
-
-
0032581727
-
-
For aerobic oxidations with ruthenium compounds carried out in toluene, see, e.g., C. Bilgrien, S. Davis, R. S. Drago, J. Am. Chem. Soc. 109, 3786 (1987); R. Tang, S. E. Diamond, N. Neary, F. Mares, J. Chem Soc. Chem. Commun. 1978, 562 (1978); I. E. Markó et al., J. Am. Chem. Soc. 119, 12661 (1997). For aerobic oxidations with ruthenium compounds carried out in trifluorotoluene, see A. Hanyu, E. Takezawa, S. Sakaguchi, Y. Ishii, Tetrahedron Lett. 39, 5557 (1998). For aerobic oxidations with ruthenium compounds carried out in dichloromethane, see R. Lenz and S. V. Ley, J. Chem. Soc. Perkin Trans. 1 1997, 3291 (1997). For aerobic oxidations with ruthenium compounds carried out in chlorobenzene, see A. Dijkman, I. W. C. E. Arends, R. A. Sheldon, Chem. Commun. 1999, 1591 (1999)
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 5557
-
-
Hanyu, A.1
Takezawa, E.2
Sakaguchi, S.3
Ishii, Y.4
-
16
-
-
33748728983
-
-
For aerobic oxidations with ruthenium compounds carried out in toluene, see, e.g., C. Bilgrien, S. Davis, R. S. Drago, J. Am. Chem. Soc. 109, 3786 (1987); R. Tang, S. E. Diamond, N. Neary, F. Mares, J. Chem Soc. Chem. Commun. 1978, 562 (1978); I. E. Markó et al., J. Am. Chem. Soc. 119, 12661 (1997). For aerobic oxidations with ruthenium compounds carried out in trifluorotoluene, see A. Hanyu, E. Takezawa, S. Sakaguchi, Y. Ishii, Tetrahedron Lett. 39, 5557 (1998). For aerobic oxidations with ruthenium compounds carried out in dichloromethane, see R. Lenz and S. V. Ley, J. Chem. Soc. Perkin Trans. 1 1997, 3291 (1997). For aerobic oxidations with ruthenium compounds carried out in chlorobenzene, see A. Dijkman, I. W. C. E. Arends, R. A. Sheldon, Chem. Commun. 1999, 1591 (1999)
-
(1997)
J. Chem. Soc. Perkin Trans. 1
, vol.1997
, pp. 3291
-
-
Lenz, R.1
Ley, S.V.2
-
17
-
-
0033592085
-
-
For aerobic oxidations with ruthenium compounds carried out in toluene, see, e.g., C. Bilgrien, S. Davis, R. S. Drago, J. Am. Chem. Soc. 109, 3786 (1987); R. Tang, S. E. Diamond, N. Neary, F. Mares, J. Chem Soc. Chem. Commun. 1978, 562 (1978); I. E. Markó et al., J. Am. Chem. Soc. 119, 12661 (1997). For aerobic oxidations with ruthenium compounds carried out in trifluorotoluene, see A. Hanyu, E. Takezawa, S. Sakaguchi, Y. Ishii, Tetrahedron Lett. 39, 5557 (1998). For aerobic oxidations with ruthenium compounds carried out in dichloromethane, see R. Lenz and S. V. Ley, J. Chem. Soc. Perkin Trans. 1 1997, 3291 (1997). For aerobic oxidations with ruthenium compounds carried out in chlorobenzene, see A. Dijkman, I. W. C. E. Arends, R. A. Sheldon, Chem. Commun. 1999, 1591 (1999)
-
(1999)
Chem. Commun.
, vol.1999
, pp. 1591
-
-
Dijkman, A.1
Arends, I.W.C.E.2
Sheldon, R.A.3
-
18
-
-
85007624047
-
-
note
-
Typical reactions with the copper-phenanthroline system, see (7), were carried out in 800 ml of toluene at 80° to 90°C while bubbling through pure oxygen, which seems to breach safety regulations in most companies or institutions
-
-
-
-
19
-
-
85007639949
-
-
note
-
The boiling point of toluene is 110°C, which means that it is less suitable for the oxidation of, e.g., 1-pentanol, giving valeraldehyde (pentanal) with a boiling point of 103°C
-
-
-
-
20
-
-
0001652295
-
-
Because the catalyst is already in a separate solid phase, the alcohol must be solubilized; otherwise, reaction rates are very low. See, for instance, T. Mallat and A. Baiker. Catal. Today 19, 247 (1994)
-
(1994)
Catal. Today
, vol.19
, pp. 247
-
-
Mallat, T.1
Baiker, A.2
-
21
-
-
85007632402
-
-
note
-
Bathophenanthroline disulfonate, or 4, 7-diphenyl-1, 10-phenanthroline disulfonate, is a nontoxic pale yellow crystalline powder with no odor, CA5: [52746-49-3]. It is moderately soluble in water (>10% w/w). For further product information, see http://129.8.100.52/html/grad-lab/msds/d/4, 7-diphenyl-1, 10-phenanthroliO. It is commercially available from Pfaltz & Bauer (Waterbury, CT), Acros (Geel, Belgium), Alfa Aesar (Ward Hill, MA), Lancaster Synthesis (Windham, NH), or TCI (Tokyo). It is often used in biomedical kits to determine the iron content (non-heme) of serum or plasma in the diagnosis of iron deficiency anemia, hemochromatosis, and chronic renal disease through colorimetry. Sentinel Diagnostic (Milan, Italy) sells standard kits under the name of "Iron Bato."
-
-
-
-
22
-
-
85007631305
-
-
note
-
The initial turnover frequency (in mmol/mmol per hour) is an indication of the speed of the reaction. It denotes the average number of substrate molecules (in mmol) that is converted by each mmol of catalyst in 1 hour. The turnover number (in mmol/mmol) denotes the average number of substrate molecules (in mmol) that 1 mmol of catalyst has converted during the course of the reaction
-
-
-
-
23
-
-
85007629465
-
-
note
-
In a reaction with 2-hexanol, the catalyst solution was recycled five times. Reactivity and selectivity remained >90 and 98%, respectively, of the initial values
-
-
-
-
24
-
-
85007631422
-
-
note
-
2O (0.136 g, 1 mmol) and NaOH were added until pH ∼11.5. The purity of the water and the chemicals used may dramatically influence the reaction rate
-
-
-
-
25
-
-
85007634790
-
-
note
-
3, 300 MHz) and gas chromatography [a Varian Star 3400 instrument equipped with a carbowax column (50 m by 0.53 mm)]. Ether was used to extract the relatively small amount of alcohol (10 to 20 mmol) from the aqueous phase to obtain good recoveries and more reliable data. In a large-scale process, the aqueous phase would be recycled after decantation of the product, and the use of organic solvent would be superfluous
-
-
-
-
26
-
-
0033715325
-
-
For identification of the catalyst, see C. J. ten Brink, I. W. C. E. Arends, G. Papadogianakis, R. A. Sheldon, Appl. Catal. A 194-195, 435 (2000)
-
(2000)
Appl. Catal. A
, vol.194-195
, pp. 435
-
-
Ten Brink, C.J.1
Arends, I.W.C.E.2
Papadogianakis, G.3
Sheldon, R.A.4
-
27
-
-
0011566392
-
-
S. W. Wimmer, P. Castan, F. L Wimmer, N. P. Johnson, Inorg. Chim. Acta 142, 13 (1988); J. Chem. Soc. Dalton Trans. 1989, 403 (1989)
-
(1988)
Inorg. Chim. Acta
, vol.142
, pp. 13
-
-
Wimmer, S.W.1
Castan, P.2
Wimmer, F.L.3
Johnson, N.P.4
-
28
-
-
0011566392
-
-
S. W. Wimmer, P. Castan, F. L Wimmer, N. P. Johnson, Inorg. Chim. Acta 142, 13 (1988); J. Chem. Soc. Dalton Trans. 1989, 403 (1989)
-
(1989)
J. Chem. Soc. Dalton Trans.
, vol.1989
, pp. 403
-
-
-
29
-
-
0002343261
-
-
J. R. Kosak and T. A. Johnson, Eds. Dekker, Dordrecht, Netherlands, chap. 16
-
A similar effect has been observed for chloride anions, see, for instance, J. H. Grate, D. R. Hamm, S. Mahajan, in Catalysis of Organic Reactions, J. R. Kosak and T. A. Johnson, Eds. (Dekker, Dordrecht, Netherlands, 1994), chap. 16, pp. 213-264
-
(1994)
Catalysis of Organic Reactions
, pp. 213-264
-
-
Grate, J.H.1
Hamm, D.R.2
Mahajan, S.3
|