메뉴 건너뛰기




Volumn 1, Issue 1, 2008, Pages 1-13

Improving prediction accuracy of drug activities by utilising unlabelled instances with feature selection

Author keywords

Co Training; feature selection; K Nearest Neighbor; KNN; QSAR; Semi Supervised Learning; SSL

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; BIOLOGICAL MODEL; BIOLOGY; COMPUTER SIMULATION; DRUG DESIGN; FACTUAL DATABASE; MUTAGEN TESTING; QUANTITATIVE STRUCTURE ACTIVITY RELATION; STATISTICS;

EID: 77449116010     PISSN: 17560756     EISSN: 17560764     Source Type: Journal    
DOI: 10.1504/IJCBDD.2008.018706     Document Type: Article
Times cited : (7)

References (29)
  • 1
    • 33748093544 scopus 로고    scopus 로고
    • Advances in the application of machine learning techniques in drug discovery, design and development
    • Springer, Cranfield University, UK
    • Barrett, S.J. and Langdon, W.B. (2005) ‘Advances in the application of machine learning techniques in drug discovery, design and development’, 10th Online World Conference on Soft Computing in Industrial Applications, Springer, Cranfield University, UK.
    • (2005) 10th Online World Conference on Soft Computing in Industrial Applications
    • Barrett, S.J.1    Langdon, W.B.2
  • 2
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Morgan Kaufmann Publishers, University of Wisconsin, Madisson, WI, USA
    • Blum, A. and Mitchell, T. (1998) ‘Combining labeled and unlabeled data with co-training’, Proceedings of the 1998 Conference on Computational Learning Theory, Morgan Kaufmann Publishers, University of Wisconsin, Madisson, WI, USA, pp.92–100.
    • (1998) Proceedings of the 1998 Conference on Computational Learning Theory , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 3
    • 27344454215 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data: an empirical study across techniques and domains
    • Chawla, N.V. and Karakoulas, G. (2005) ‘Learning from labeled and unlabeled data: an empirical study across techniques and domains’, Journal of Artificial Intelligence Research, Vol. 23, pp.331–366.
    • (2005) Journal of Artificial Intelligence Research , vol.23 , pp. 331-366
    • Chawla, N.V.1    Karakoulas, G.2
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I. and Elisseeff, A. (2003) ‘An introduction to variable and feature selection’, Journal of Machine Learning Research, Vol. 3, pp.1157—1182.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 10
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Morgan Kaufmann, San Francisco, CA
    • Joachims, T. (1999) ‘Transductive inference for text classification using support vector machines’, Proceedings of 16th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, pp.200–209.
    • (1999) Proceedings of 16th International Conference on Machine Learning , pp. 200-209
    • Joachims, T.1
  • 11
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R. and George, J. H. (1997) ‘Wrappers for feature subset selection’, Artificial Intelligence, Vol. 97, pp.273–324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    George, J.H.2
  • 13
    • 22944447138 scopus 로고    scopus 로고
    • Feature selection for multi-class problems using support vector machines
    • Springer, Auckland, New Zealand
    • Li, G-Z., Yang, J., Liu, G-P. and Xue, L. (2004a) ‘Feature selection for multi-class problems using support vector machines’, Lecture Notes on Artificial Intelligence 3173 (PRICAI2004), Springer, Auckland, New Zealand, pp.292–300.
    • (2004) Lecture Notes on Artificial Intelligence 3173 (PRICAI2004) , pp. 292-300
    • Li, G.-Z.1    Yang, J.2    Liu, G.-P.3    Xue, L.4
  • 14
    • 10044255601 scopus 로고    scopus 로고
    • Semiempirical quantum chemical method and artificial neural networks applied for max computation of some azo dyes
    • Li, G-Z., Yang, J., Song, H-F., Yang, S-S., Lu, W-C., and Chen, N-Y. (2004b) ‘Semiempirical quantum chemical method and artificial neural networks applied for max computation of some azo dyes’, Journal of Chemical Information and Computer Science, Vol. 44, No. 6, pp.2047–2050.
    • (2004) Journal of Chemical Information and Computer Science , vol.44 , Issue.6 , pp. 2047-2050
    • Li, G.-Z.1    Yang, J.2    Song, H.-F.3    Yang, S.-S.4    Lu, W.-C.5    Chen, N.-Y.6
  • 16
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu, H. and Yu, L. (2005) ‘Toward integrating feature selection algorithms for classification and clustering’, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 3, pp.1–12.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 17
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition system
    • Marill, T. and Green, D. M. (1963) ‘On the effectiveness of receptors in recognition system’, IEEE Transaction on Information Theory, Vol. 9, pp.11–17.
    • (1963) IEEE Transaction on Information Theory , vol.9 , pp. 11-17
    • Marill, T.1    Green, D.M.2
  • 18
    • 0000513303 scopus 로고
    • Principled architecture selection for neural networks: application to corporate bond rating prediction
    • Moody, J.E., Hanson, S.J. and Lippmann, R.P. (Eds.) Morgan Kaufmann Publishers, Inc., Denver, Colorado, USA
    • Moody, J. and Utans, J. (1992) ‘Principled architecture selection for neural networks: application to corporate bond rating prediction’, in Moody, J.E., Hanson, S.J. and Lippmann, R.P. (Eds.): Advances in Neural Information Processing Systems, Morgan Kaufmann Publishers, Inc., Denver, Colorado, USA, pp.683–690.
    • (1992) Advances in Neural Information Processing Systems , pp. 683-690
    • Moody, J.1    Utans, J.2
  • 19
    • 84948597805 scopus 로고
    • A comparison of seven techniques for choosing subsets of pattern recognition
    • Mucciardi, A.N. and Gose, E.E. (1971) ‘A comparison of seven techniques for choosing subsets of pattern recognition’, IEEE Transactions on Computers, Vol. C-20, pp.1023–1031.
    • (1971) IEEE Transactions on Computers , vol.C-20 , pp. 1023-1031
    • Mucciardi, A.N.1    Gose, E.E.2
  • 20
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K., McCallum, A.K., Thrun, S. and Mitchell, T. (2000) ‘Text classification from labeled and unlabeled documents using EM’, Machine Learning, Vol. 39, Nos. 2–3, pp.103–134.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 23
    • 0032781888 scopus 로고    scopus 로고
    • Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN
    • Tominaga, Y. (1999) ‘Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN’, Chemometrics and Intelligent Laboratory Systems, Vol. 49, No. 1, pp.105–115.
    • (1999) Chemometrics and Intelligent Laboratory Systems , vol.49 , Issue.1 , pp. 105-115
    • Tominaga, Y.1
  • 24
    • 0036721934 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Verikas, A. and Bacauskiene, M. (2002) ‘Feature selection with neural networks’, Pattern Recognition Letters, Vol. 23, No. 11, pp.1323–1335.
    • (2002) Pattern Recognition Letters , vol.23 , Issue.11 , pp. 1323-1335
    • Verikas, A.1    Bacauskiene, M.2
  • 25
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Xue, Y., Li, Z.R., Yap, C.W., Sun, L.Z., Chen, X. and Chen, Y.Z. (2004) ‘Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents’, Journal of Chemical Information and Computer Science, Vol. 44, No. 5, pp.1630–1638.
    • (2004) Journal of Chemical Information and Computer Science , vol.44 , Issue.5 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3    Sun, L.Z.4    Chen, X.5    Chen, Y.Z.6
  • 27
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • October
    • Yu, L. and Liu, H. (2004) ‘Efficient feature selection via analysis of relevance and redundancy’, Journal of Machine Learning Research, Vol. 5, No. 12, October, pp.1205–1224.
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.12 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 29
    • 33744955193 scopus 로고    scopus 로고
    • PhD Thesis, Carnegie Mellon University, CMU-LTI-05-192, Pittsburgh, PA, USA
    • Zhu, X. (2005) Semi-Supervised Learning with Graphs, PhD Thesis, Carnegie Mellon University, CMU-LTI-05-192, Pittsburgh, PA, USA.
    • (2005) Semi-Supervised Learning with Graphs
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.