-
1
-
-
33748093544
-
Advances in the application of machine learning techniques in drug discovery, design and development
-
Springer, Cranfield University, UK
-
Barrett, S.J. and Langdon, W.B. (2005) ‘Advances in the application of machine learning techniques in drug discovery, design and development’, 10th Online World Conference on Soft Computing in Industrial Applications, Springer, Cranfield University, UK.
-
(2005)
10th Online World Conference on Soft Computing in Industrial Applications
-
-
Barrett, S.J.1
Langdon, W.B.2
-
2
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
Morgan Kaufmann Publishers, University of Wisconsin, Madisson, WI, USA
-
Blum, A. and Mitchell, T. (1998) ‘Combining labeled and unlabeled data with co-training’, Proceedings of the 1998 Conference on Computational Learning Theory, Morgan Kaufmann Publishers, University of Wisconsin, Madisson, WI, USA, pp.92–100.
-
(1998)
Proceedings of the 1998 Conference on Computational Learning Theory
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
3
-
-
27344454215
-
Learning from labeled and unlabeled data: an empirical study across techniques and domains
-
Chawla, N.V. and Karakoulas, G. (2005) ‘Learning from labeled and unlabeled data: an empirical study across techniques and domains’, Journal of Artificial Intelligence Research, Vol. 23, pp.331–366.
-
(2005)
Journal of Artificial Intelligence Research
, vol.23
, pp. 331-366
-
-
Chawla, N.V.1
Karakoulas, G.2
-
4
-
-
27744504615
-
-
World Scientific Publishing Company, Singapore
-
Chen, N-Y., Lu, W-C., Yang, J. and Li, G-Z. (2004) Support Vector Machines in Chemistry, World Scientific Publishing Company, Singapore.
-
(2004)
Support Vector Machines in Chemistry
-
-
Chen, N.-Y.1
Lu, W.-C.2
Yang, J.3
Li, G.-Z.4
-
6
-
-
10044263477
-
New approach by kriging models to problems in QSAR
-
Fang, K-T., Yin, H. and Liang, Y-Z. (2004) ‘New approach by kriging models to problems in QSAR’, Journal of Chemical Information and Computer Science, Vol. 44, pp.2106–2113.
-
(2004)
Journal of Chemical Information and Computer Science
, vol.44
, pp. 2106-2113
-
-
Fang, K.-T.1
Yin, H.2
Liang, Y.-Z.3
-
7
-
-
0141890760
-
Predictive toxicology: Benchmarking molecular descriptors and statistical methods
-
Feng, J., Lurati, L., Ouyang, H., Robinson, T., Wang, Y., Yuan, S., and Young, S.S. (2003) ‘Predictive toxicology: Benchmarking molecular descriptors and statistical methods’, Journal of Chemical Information and Computer Science, Vol. 43, pp.1463–1470.
-
(2003)
Journal of Chemical Information and Computer Science
, vol.43
, pp. 1463-1470
-
-
Feng, J.1
Lurati, L.2
Ouyang, H.3
Robinson, T.4
Wang, Y.5
Yuan, S.6
Young, S.S.7
-
8
-
-
0007950880
-
Enhancing supervised learning with unlabeled data
-
Morgan Kaufmann, San Francisco, CA
-
Goldman, S. and Zhou, Y. (2000) ‘Enhancing supervised learning with unlabeled data’, Proceedings of the 17th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, pp.327–334.
-
(2000)
Proceedings of the 17th International Conference on Machine Learning
, pp. 327-334
-
-
Goldman, S.1
Zhou, Y.2
-
9
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I. and Elisseeff, A. (2003) ‘An introduction to variable and feature selection’, Journal of Machine Learning Research, Vol. 3, pp.1157—1182.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
10
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Morgan Kaufmann, San Francisco, CA
-
Joachims, T. (1999) ‘Transductive inference for text classification using support vector machines’, Proceedings of 16th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, pp.200–209.
-
(1999)
Proceedings of 16th International Conference on Machine Learning
, pp. 200-209
-
-
Joachims, T.1
-
11
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R. and George, J. H. (1997) ‘Wrappers for feature subset selection’, Artificial Intelligence, Vol. 97, pp.273–324.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
George, J.H.2
-
12
-
-
84947880097
-
FESCOT: feature selection for co-training
-
Li, G-Z. and Liu, T-Y. (2008) ‘FESCOT: feature selection for co-training’, Journal of Shanghai University (English Version), Vol. 11, No. 1, pp.1–5.
-
(2008)
Journal of Shanghai University (English Version)
, vol.11
, Issue.1
, pp. 1-5
-
-
Li, G.-Z.1
Liu, T.-Y.2
-
13
-
-
22944447138
-
Feature selection for multi-class problems using support vector machines
-
Springer, Auckland, New Zealand
-
Li, G-Z., Yang, J., Liu, G-P. and Xue, L. (2004a) ‘Feature selection for multi-class problems using support vector machines’, Lecture Notes on Artificial Intelligence 3173 (PRICAI2004), Springer, Auckland, New Zealand, pp.292–300.
-
(2004)
Lecture Notes on Artificial Intelligence 3173 (PRICAI2004)
, pp. 292-300
-
-
Li, G.-Z.1
Yang, J.2
Liu, G.-P.3
Xue, L.4
-
14
-
-
10044255601
-
Semiempirical quantum chemical method and artificial neural networks applied for max computation of some azo dyes
-
Li, G-Z., Yang, J., Song, H-F., Yang, S-S., Lu, W-C., and Chen, N-Y. (2004b) ‘Semiempirical quantum chemical method and artificial neural networks applied for max computation of some azo dyes’, Journal of Chemical Information and Computer Science, Vol. 44, No. 6, pp.2047–2050.
-
(2004)
Journal of Chemical Information and Computer Science
, vol.44
, Issue.6
, pp. 2047-2050
-
-
Li, G.-Z.1
Yang, J.2
Song, H.-F.3
Yang, S.-S.4
Lu, W.-C.5
Chen, N.-Y.6
-
15
-
-
84866524595
-
Feature selection for co-training: a QSAR study
-
Li, G-Z., Li, D., Lu, W-C., Yang, M.Q. and Yang, J.Y. (2007) ‘Feature selection for co-training: a QSAR study’, Proceedings of the 2007 International Conference on Artificial Intelligence (ICAI’07), pp.138–146.
-
(2007)
Proceedings of the 2007 International Conference on Artificial Intelligence (ICAI’07)
, pp. 138-146
-
-
Li, G.-Z.1
Li, D.2
Lu, W.-C.3
Yang, M.Q.4
Yang, J.Y.5
-
16
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Liu, H. and Yu, L. (2005) ‘Toward integrating feature selection algorithms for classification and clustering’, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 3, pp.1–12.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.3
, pp. 1-12
-
-
Liu, H.1
Yu, L.2
-
17
-
-
84914813506
-
On the effectiveness of receptors in recognition system
-
Marill, T. and Green, D. M. (1963) ‘On the effectiveness of receptors in recognition system’, IEEE Transaction on Information Theory, Vol. 9, pp.11–17.
-
(1963)
IEEE Transaction on Information Theory
, vol.9
, pp. 11-17
-
-
Marill, T.1
Green, D.M.2
-
18
-
-
0000513303
-
Principled architecture selection for neural networks: application to corporate bond rating prediction
-
Moody, J.E., Hanson, S.J. and Lippmann, R.P. (Eds.) Morgan Kaufmann Publishers, Inc., Denver, Colorado, USA
-
Moody, J. and Utans, J. (1992) ‘Principled architecture selection for neural networks: application to corporate bond rating prediction’, in Moody, J.E., Hanson, S.J. and Lippmann, R.P. (Eds.): Advances in Neural Information Processing Systems, Morgan Kaufmann Publishers, Inc., Denver, Colorado, USA, pp.683–690.
-
(1992)
Advances in Neural Information Processing Systems
, pp. 683-690
-
-
Moody, J.1
Utans, J.2
-
19
-
-
84948597805
-
A comparison of seven techniques for choosing subsets of pattern recognition
-
Mucciardi, A.N. and Gose, E.E. (1971) ‘A comparison of seven techniques for choosing subsets of pattern recognition’, IEEE Transactions on Computers, Vol. C-20, pp.1023–1031.
-
(1971)
IEEE Transactions on Computers
, vol.C-20
, pp. 1023-1031
-
-
Mucciardi, A.N.1
Gose, E.E.2
-
20
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam, K., McCallum, A.K., Thrun, S. and Mitchell, T. (2000) ‘Text classification from labeled and unlabeled documents using EM’, Machine Learning, Vol. 39, Nos. 2–3, pp.103–134.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
23
-
-
0032781888
-
Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN
-
Tominaga, Y. (1999) ‘Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN’, Chemometrics and Intelligent Laboratory Systems, Vol. 49, No. 1, pp.105–115.
-
(1999)
Chemometrics and Intelligent Laboratory Systems
, vol.49
, Issue.1
, pp. 105-115
-
-
Tominaga, Y.1
-
24
-
-
0036721934
-
Feature selection with neural networks
-
Verikas, A. and Bacauskiene, M. (2002) ‘Feature selection with neural networks’, Pattern Recognition Letters, Vol. 23, No. 11, pp.1323–1335.
-
(2002)
Pattern Recognition Letters
, vol.23
, Issue.11
, pp. 1323-1335
-
-
Verikas, A.1
Bacauskiene, M.2
-
25
-
-
5444272497
-
Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
-
Xue, Y., Li, Z.R., Yap, C.W., Sun, L.Z., Chen, X. and Chen, Y.Z. (2004) ‘Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents’, Journal of Chemical Information and Computer Science, Vol. 44, No. 5, pp.1630–1638.
-
(2004)
Journal of Chemical Information and Computer Science
, vol.44
, Issue.5
, pp. 1630-1638
-
-
Xue, Y.1
Li, Z.R.2
Yap, C.W.3
Sun, L.Z.4
Chen, X.5
Chen, Y.Z.6
-
26
-
-
0037185564
-
Mixture deconvolution and analysis of ames mutagenicity data
-
Young, S.S., Gombar, V.K., Emptage, M.R., Cariello, N.F. and Lambert, C. (2002) ‘Mixture deconvolution and analysis of ames mutagenicity data’, Chemometrics and Intelligent Laboratory Systems, Vol. 60, pp.5–11.
-
(2002)
Chemometrics and Intelligent Laboratory Systems
, vol.60
, pp. 5-11
-
-
Young, S.S.1
Gombar, V.K.2
Emptage, M.R.3
Cariello, N.F.4
Lambert, C.5
-
27
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
October
-
Yu, L. and Liu, H. (2004) ‘Efficient feature selection via analysis of relevance and redundancy’, Journal of Machine Learning Research, Vol. 5, No. 12, October, pp.1205–1224.
-
(2004)
Journal of Machine Learning Research
, vol.5
, Issue.12
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
28
-
-
84880742718
-
Semi-supervised regression with co-training
-
Edinburgh, Scotland
-
Zhou, Z-H. and Li, M. (2005) ‘Semi-supervised regression with co-training’, Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05), Edinburgh, Scotland, pp.908–913.
-
(2005)
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05)
, pp. 908-913
-
-
Zhou, Z.-H.1
Li, M.2
-
29
-
-
33744955193
-
-
PhD Thesis, Carnegie Mellon University, CMU-LTI-05-192, Pittsburgh, PA, USA
-
Zhu, X. (2005) Semi-Supervised Learning with Graphs, PhD Thesis, Carnegie Mellon University, CMU-LTI-05-192, Pittsburgh, PA, USA.
-
(2005)
Semi-Supervised Learning with Graphs
-
-
Zhu, X.1
|