메뉴 건너뛰기




Volumn 1, Issue , 2007, Pages 138-144

Feature selection for co-training: A QSAR study

Author keywords

[No Author keywords available]

Indexed keywords

CO-TRAINING; DATA SETS; DRUG MOLECULES; EXPERIMENTAL METHODS; FEATURE SELECTION METHODS; HIGH COSTS; LONG CYCLES; MOLECULAR ACTIVITIES; NOVEL ALGORITHM; NUMERICAL EXPERIMENTAL; PREDICTION ACCURACY; QSAR MODEL; QSAR STUDIES; QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP; SEMI-SUPERVISED LEARNING;

EID: 84866524595     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (28)
  • 2
    • 0032781888 scopus 로고    scopus 로고
    • Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN
    • DOI 10.1016/S0169-7439(99)00034-9, PII S0169743999000349
    • Y. Tominaga, "Comparative study of class data analysis with PCA-LDA, SIMCA, PLS. ANNs, and k-NN," Chemometrics and Intelligent Laboratory Systems, vol. 49(1), pp. 105-115, 1999. (Pubitemid 29387363)
    • (1999) Chemometrics and Intelligent Laboratory Systems , vol.49 , Issue.1 , pp. 105-115
    • Tominaga, Y.1
  • 3
    • 0037191111 scopus 로고    scopus 로고
    • Combining PLS with GA-GP for QSAR
    • DOI 10.1016/S0169-7439(02)00050-3, PII S0169743902000503
    • K. Tang and T. Li, "Combining PLS with GA-GP for QSAR," Chemometrics and Intelligent Laboratory Systems, vol. 64, pp. 55-64, 2002. (Pubitemid 35304559)
    • (2002) Chemometrics and Intelligent Laboratory Systems , vol.64 , Issue.1 , pp. 55-64
    • Tang, K.1    Li, T.2
  • 5
    • 10044255601 scopus 로고    scopus 로고
    • Semiempirical quantum chemical method and artificial neural networks applied for max computation of some azo dyes
    • G.-Z. Li, J. Yang, H.-F. Song, S.-S. Yang, W.-C. Lu, and N.-Y. Chen, "Semiempirical quantum chemical method and artificial neural networks applied for max computation of some azo dyes," Journal of Chemical Information and Computer Science, vol. 44(6), pp. 2047-2050. 2004.
    • (2004) Journal of Chemical Information and Computer Science , vol.44 , Issue.6 , pp. 2047-2050
    • Li, G.-Z.1    Yang, J.2    Song, H.-F.3    Yang, S.-S.4    Lu, W.-C.5    Chen, N.-Y.6
  • 6
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Y. Xue, Z. R. Li, C. W. Yap, L. Z. Sun, X. Chen, and Y. Z. Chen, "Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents," Journal of Chemical Information & Computer Science, vol. 44(5), pp. 1630-1638, 2004.
    • (2004) Journal of Chemical Information & Computer Science , vol.44 , Issue.5 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3    Sun, L.Z.4    Chen, X.5    Chen, Y.Z.6
  • 8
    • 0005977840 scopus 로고    scopus 로고
    • Learning with labeled and unlabeled data
    • University of Edinburgh Tech. Rep.
    • M. Seeger, "Learning with labeled and unlabeled data," Institute for Adaptive and Neural Computation, University of Edinburgh, Available at http://www.dai.ed.ac.uk/seeger/papers.html, Tech. Rep., 2000.
    • (2000) Institute for Adaptive and Neural Computation
    • Seeger, M.1
  • 9
    • 33744955193 scopus 로고    scopus 로고
    • Ph.D. dissertation, Carnegie Mellon University CMU- LTI-05-192
    • X. Zhu, "Semi-supervised learning with graphs," Ph.D. dissertation, Carnegie Mellon University, 2005, CMU- LTI-05-192.
    • (2005) Semi-supervised Learning with Graphs
    • Zhu, X.1
  • 10
    • 27344454215 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data: An empirical study across techniques and domains
    • N. V. Chawla and G. Karakoulas, "Learning from labeled and unlabeled data: An empirical study across techniques and domains," Journal of Artificial Intelligence Research, vol. 23, pp. 331-366, 2005. (Pubitemid 41525872)
    • (2005) Journal of Artificial Intelligence Research , vol.23 , pp. 331-366
    • Chawla, N.V.1    Karakoulas, G.2
  • 14
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • (Oct)
    • L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," Journal of Machine Learning Research, vol. 5 (Oct), pp. 1205-1224, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 15
    • 84948597805 scopus 로고
    • A comparison of seven techniques for choosing subsets of pattern recognition
    • A. N. Mucciardi and E. E. Gose, "A comparison of seven techniques for choosing subsets of pattern recognition," IEEE Transactions on Computers, vol. C-20, pp. 1023-1031, 1971.
    • (1971) IEEE Transactions on Computers , vol.C-20 , pp. 1023-1031
    • Mucciardi, A.N.1    Gose, E.E.2
  • 16
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of machine learning research, vol. 3, pp. 1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 17
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Transactions on Knowledge and Data Engineering, vol. 17(3), pp. 1-12, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 18
    • 0031381525 scopus 로고    scopus 로고
    • Wrappcrs for feature subset selection
    • R. Kohavi and J. H. George, "Wrappcrs for feature subset selection," Artificial Intelligence, vol. 97, pp. 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    George, J.H.2
  • 19
    • 0000513303 scopus 로고
    • Principled architecture selection for neural networks: Application to corporate bond rating prediction
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. Morgan Kaufmann Publishers, Inc.
    • J. Moody and J. Utans, "Principled architecture selection for neural networks: Application to corporate bond rating prediction," in Advances in Neural Information Processing Systems, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. Morgan Kaufmann Publishers, Inc., 1992, pp. 683-690.
    • (1992) Advances in Neural Information Processing Systems , pp. 683-690
    • Moody, J.1    Utans, J.2
  • 20
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • San Francisco, CA: Morgan Kaufmann
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proceedings of 16th International Conference on On Machine Learning. San Francisco, CA: Morgan Kaufmann, 1999, pp. 200-209.
    • (1999) Proceedings of 16th International Conference on On Machine Learning. , pp. 200-209
    • Joachims, T.1
  • 21
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Machine Learning, vol. 39, pp. 103-134, 2000. (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 23
    • 0036721934 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • DOI 10.1016/S0167-8655(02)00081-8, PII S0167865502000818
    • A. Verikas and M. Bacauskiene, "Feature selection with neural networks," Pattern Recognition Letters, vol. 23, pp. 1323-1335, 2002. (Pubitemid 34657744)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.11 , pp. 1323-1335
    • Verikas, A.1    Bacauskiene, M.2
  • 25
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition system
    • T. Marill and D. M. Green, "On the effectiveness of receptors in recognition system," IEEE Transaction on Information Theory, vol. 9. pp. 11-17, 1963.
    • (1963) IEEE Transaction on Information Theory , vol.9 , pp. 11-17
    • Marill, T.1    Green, D.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.