메뉴 건너뛰기




Volumn 37, Issue 6, 2010, Pages 4463-4467

Analysis of sleep EEG activity during hypopnoea episodes by least squares support vector machine employing AR coefficients

Author keywords

AR coefficients; Electroencephalogram (EEG); Least squares support vector machines; Sleep apnoea hypopnoea

Indexed keywords

AUTO-REGRESSIVE; AUTOMATIC DETECTION; CLASSIFICATION ACCURACY; EEG SIGNALS; ELECTRICAL ACTIVITIES; HUMAN EEG; HUMAN ELECTROENCEPHALOGRAM; HYPOPNOEA SYNDROME; INPUT PATTERNS; LEAST SQUARES SUPPORT VECTOR MACHINES; OBSTRUCTIVE SLEEP APNOEA; SLEEP EEG; THREE ELECTRODE; TWO STAGE;

EID: 77249090169     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.12.065     Document Type: Article
Times cited : (12)

References (27)
  • 1
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli H., Zhou Z., and Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods 123 1 (2003) 69-87
    • (2003) Journal of Neuroscience Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 3
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., and Vapnik V. Support vector networks. Machine Learning 20 3 (1995) 273-297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 77249160786 scopus 로고    scopus 로고
    • The relationship between EEG, PPG and Oxymetric signal responses during the OSAH events: A pilot sleep study, sleep and biological rhythms 5 (Suppl. 1), A42
    • Abstract published in, Australia, September
    • Cvetkovic, D., Holland, G., & Cosic, I. (2007). The relationship between EEG, PPG and Oxymetric signal responses during the OSAH events: A pilot sleep study, sleep and biological rhythms 5 (Suppl. 1), A42. [Abstract published in Journal and presented at the WorldSleep07, fifth world sleep congress of the WFSRSMS, Cairns, Australia, September 2007].
    • (2007) Journal and presented at the WorldSleep07, fifth world sleep congress of the WFSRSMS, Cairns
    • Cvetkovic, D.1    Holland, G.2    Cosic, I.3
  • 6
    • 47049090821 scopus 로고    scopus 로고
    • Wavelet transform feature extraction from human PPG, ECG and EEG signal responses to ELF PEMF exposures: A pilot study
    • Cvetkovic D., Übeyli E.D., and Cosic I. Wavelet transform feature extraction from human PPG, ECG and EEG signal responses to ELF PEMF exposures: A pilot study. Digital Signal Processing 18 5 (2008) 861-874
    • (2008) Digital Signal Processing , vol.18 , Issue.5 , pp. 861-874
    • Cvetkovic, D.1    Übeyli, E.D.2    Cosic, I.3
  • 7
    • 77956059301 scopus 로고    scopus 로고
    • Alterations in sleep EEG activity during the hypopnoea episodes
    • in press, doi: 10.1007/s10916-009-9261-1
    • Cvetkovic, D., Übeyli, E.D., Holland, G., & Cosic, I. (in press). Alterations in sleep EEG activity during the hypopnoea episodes. Journal of Medical Systems. doi: 10.1007/s10916-009-9261-1.
    • Journal of Medical Systems
    • Cvetkovic, D.1    Übeyli, E.D.2    Holland, G.3    Cosic, I.4
  • 8
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • Hazarika N., Chen J.Z., Tsoi A.C., and Sergejew A. Classification of EEG signals using the wavelet transform. Signal Processing 59 1 (1997) 61-72
    • (1997) Signal Processing , vol.59 , Issue.1 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 10
    • 0019636227 scopus 로고
    • Spectrum analysis - A modern perspective
    • Kay S.M., and Marple S.L. Spectrum analysis - A modern perspective. Proceedings of the IEEE 69 (1981) 1380-1419
    • (1981) Proceedings of the IEEE , vol.69 , pp. 1380-1419
    • Kay, S.M.1    Marple, S.L.2
  • 15
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters 9 3 (1999) 293-300
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 16
    • 0038355084 scopus 로고    scopus 로고
    • Fuzzy least squares support vector machines for multiclass problems
    • Tsujinishi D., and Abe S. Fuzzy least squares support vector machines for multiclass problems. Neural Networks 16 (2003) 785-792
    • (2003) Neural Networks , vol.16 , pp. 785-792
    • Tsujinishi, D.1    Abe, S.2
  • 17
    • 33746286608 scopus 로고    scopus 로고
    • Analysis of EEG signals using Lyapunov exponents
    • Übeyli E.D. Analysis of EEG signals using Lyapunov exponents. Neural Network World 16 3 (2006) 257-273
    • (2006) Neural Network World , vol.16 , Issue.3 , pp. 257-273
    • Übeyli, E.D.1
  • 18
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG signals classification
    • Übeyli E.D. Wavelet/mixture of experts network structure for EEG signals classification. Expert Systems with Applications 34 3 (2008) 1954-1962
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 1954-1962
    • Übeyli, E.D.1
  • 19
    • 37049007663 scopus 로고    scopus 로고
    • Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
    • Übeyli E.D. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Computers in Biology and Medicine 38 1 (2008) 14-22
    • (2008) Computers in Biology and Medicine , vol.38 , Issue.1 , pp. 14-22
    • Übeyli, E.D.1
  • 20
    • 54449097115 scopus 로고    scopus 로고
    • Implementing eigenvector methods/probabilistic neural networks for analysis of EEG signals
    • Übeyli E.D. Implementing eigenvector methods/probabilistic neural networks for analysis of EEG signals. Neural Networks 21 9 (2008) 1410-1417
    • (2008) Neural Networks , vol.21 , Issue.9 , pp. 1410-1417
    • Übeyli, E.D.1
  • 21
    • 56549122554 scopus 로고    scopus 로고
    • Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks
    • Übeyli E.D. Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks. Digital Signal Processing 19 1 (2009) 134-143
    • (2009) Digital Signal Processing , vol.19 , Issue.1 , pp. 134-143
    • Übeyli, E.D.1
  • 22
    • 53849114338 scopus 로고    scopus 로고
    • Measuring saliency of features representing EEG signals using signal-to-noise ratios
    • Übeyli E.D. Measuring saliency of features representing EEG signals using signal-to-noise ratios. Expert Systems with Applications 36 1 (2009) 501-509
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 501-509
    • Übeyli, E.D.1
  • 23
    • 56349123198 scopus 로고    scopus 로고
    • Decision support systems for time-varying biomedical signals: EEG signals classification
    • Übeyli E.D. Decision support systems for time-varying biomedical signals: EEG signals classification. Expert Systems with Applications 36 2 (2009) 2275-2284
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2275-2284
    • Übeyli, E.D.1
  • 24
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • Übeyli E.D. Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Processing 19 2 (2009) 297-308
    • (2009) Digital Signal Processing , vol.19 , Issue.2 , pp. 297-308
    • Übeyli, E.D.1
  • 25
    • 41849134744 scopus 로고    scopus 로고
    • AR spectral analysis technique for human PPG, ECG and EEG signals
    • Übeyli E.D., Cvetkovic D., and Cosic I. AR spectral analysis technique for human PPG, ECG and EEG signals. Journal of Medical Systems 32 3 (2008) 201-206
    • (2008) Journal of Medical Systems , vol.32 , Issue.3 , pp. 201-206
    • Übeyli, E.D.1    Cvetkovic, D.2    Cosic, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.