메뉴 건너뛰기




Volumn 2, Issue , 2008, Pages 265-297

Deconvolution for an atomic distribution

Author keywords

Asymptotic normality; Atomic distribution; De Convolution; Kernel density estimator

Indexed keywords


EID: 77049085715     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/07-EJS121     Document Type: Article
Times cited : (16)

References (50)
  • 1
    • 0001082073 scopus 로고
    • On the distribution of a positive random variable having a discrete probability mass at the origin
    • J. Aitchison. On the distribution of a positive random variable having a discrete probability mass at the origin. J. Amer. Statist. Assoc., 50:901-908, 1955.
    • (1955) J. Amer. Statist. Assoc. , vol.50 , pp. 901-908
    • Aitchison, J.1
  • 3
    • 42549171048 scopus 로고    scopus 로고
    • Sharp optimality for density deconvolution with dominating bias, I
    • C. Butucea and A. Tsybakov. Sharp optimality for density deconvolution with dominating bias, I. Theor. Probab. Appl., 52:111-128, 2007.
    • (2007) Theor. Probab. Appl. , vol.52 , pp. 111-128
    • Butucea, C.1    Tsybakov, A.2
  • 4
    • 47849090751 scopus 로고    scopus 로고
    • Sharp optimality for density deconvolution with dominating bias, II
    • C. Butucea and A. Tsybakov. Sharp optimality for density deconvolution with dominating bias, II. Theor. Probab. Appl., 52:336-349, 2007.
    • (2007) Theor. Probab. Appl. , vol.52 , pp. 336-349
    • Butucea, C.1    Tsybakov, A.2
  • 5
    • 0002488565 scopus 로고    scopus 로고
    • Option valuation using the Fast Fourier Transform
    • P. Carr and D.B. Madan. Option valuation using the Fast Fourier Transform. J. Comput. Finance, 2:61-73, 1998.
    • (1998) J. Comput. Finance , vol.2 , pp. 61-73
    • Carr, P.1    Madan, D.B.2
  • 6
    • 0001736196 scopus 로고
    • Optimal rates of convergence for deconvoluting a density
    • R. Carrol and P. Hall. Optimal rates of convergence for deconvoluting a density. J. Am. Statist. Assoc., 83:1184-1186, 1988.
    • (1988) J. Am. Statist. Assoc. , vol.83 , pp. 1184-1186
    • Carrol, R.1    Hall, P.2
  • 7
    • 0042910589 scopus 로고    scopus 로고
    • Deconvolution with arbitrary smooth kernels
    • E. Cator. Deconvolution with arbitrary smooth kernels. Statist. Probab. Lett., 54:205-215, 2001.
    • (2001) Statist. Probab. Lett. , vol.54 , pp. 205-215
    • Cator, E.1
  • 10
    • 3142599194 scopus 로고    scopus 로고
    • Bootstrap bandwidth selection in kernel density estimation from a contaminated sample
    • A. Delaigle and I. Gijbels. Bootstrap bandwidth selection in kernel density estimation from a contaminated sample. Ann. Inst. Statist. Math., 56:19-47, 2003.
    • (2003) Ann. Inst. Statist. Math. , vol.56 , pp. 19-47
    • Delaigle, A.1    Gijbels, I.2
  • 11
    • 1142268196 scopus 로고    scopus 로고
    • Comparison of data-driven bandwidth selection procedures in deconvolution kernel density estimation
    • A. Delaigle and I. Gijbels. Comparison of data-driven bandwidth selection procedures in deconvolution kernel density estimation. Comp. Statist. Data Anal., 45:249-267, 2004.
    • (2004) Comp. Statist. Data Anal. , vol.45 , pp. 249-267
    • Delaigle, A.1    Gijbels, I.2
  • 12
    • 34548572873 scopus 로고    scopus 로고
    • Frequent problems in calculating integrals and optimizing objective functions: A case study in density deconvolution
    • A. Delaigle and I. Gijbels. Frequent problems in calculating integrals and optimizing objective functions: a case study in density deconvolution. Stat. Comp., 17:349-355, 2007.
    • (2007) Stat. Comp. , vol.17 , pp. 349-355
    • Delaigle, A.1    Gijbels, I.2
  • 13
    • 33745837056 scopus 로고    scopus 로고
    • On optimal kernel choice for deconvolution
    • A. Delaigle and P. Hall. On optimal kernel choice for deconvolution. Stat. Probab. Lett., 76:1594-1602, 2006.
    • (2006) Stat. Probab. Lett. , vol.76 , pp. 1594-1602
    • Delaigle, A.1    Hall, P.2
  • 14
    • 42349113705 scopus 로고    scopus 로고
    • On deconvolution with repeated measurements
    • A. Delaigle, P. Hall and A. Meister. On deconvolution with repeated measurements. Ann. Statist., 36:665-685, 2008.
    • (2008) Ann. Statist. , vol.36 , pp. 665-685
    • Delaigle, A.1    Hall, P.2    Meister, A.3
  • 16
    • 84988101319 scopus 로고
    • A note on consistent deconvolution in density estimation
    • L. Devroye. A note on consistent deconvolution in density estimation. Canad. J. Statist., 17:235-239, 1989.
    • (1989) Canad. J. Statist. , vol.17 , pp. 235-239
    • Devroye, L.1
  • 18
    • 0001095533 scopus 로고
    • Fourier approach to nonparametric deconvolution of a density estimate
    • P.J. Diggle and P. Hall. Fourier approach to nonparametric deconvolution of a density estimate. J. R. Statist. Soc. B, 55:523-531, 1993.
    • (1993) J. R. Statist. Soc. B , vol.55 , pp. 523-531
    • Diggle, P.J.1    Hall, P.2
  • 19
    • 0002688277 scopus 로고
    • Asymptotic normality for deconvolution kernel density estimators
    • J. Fan. Asymptotic normality for deconvolution kernel density estimators. Sankhya Ser., 53:97-110, 1991.
    • (1991) Sankhya Ser. , vol.53 , pp. 97-110
    • Fan, J.1
  • 20
    • 0002531005 scopus 로고
    • Global behaviour of kernel deconvolution estimates
    • J. Fan. Global behaviour of kernel deconvolution estimates. Statist. Sinica, 1:541-551, 1991.
    • (1991) Statist. Sinica , vol.1 , pp. 541-551
    • Fan, J.1
  • 21
    • 0000867838 scopus 로고
    • On the optimal rates of convergence for nonparametric deconvolution problems
    • J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist., 19:1257-1272, 1991.
    • (1991) Ann. Statist. , vol.19 , pp. 1257-1272
    • Fan, J.1
  • 22
    • 84988123046 scopus 로고
    • Deconvolution for supersmooth distributions
    • J. Fan. Deconvolution for supersmooth distributions. Canad. J. Statist., 20:155-169, 1992.
    • (1992) Canad. J. Statist. , vol.20 , pp. 155-169
    • Fan, J.1
  • 23
    • 0442322800 scopus 로고    scopus 로고
    • A note on asymptotic normality for deconvolution kernel density estimators
    • J. Fan and Y. Liu. A note on asymptotic normality for deconvolution kernel density estimators. Sankhya Ser., 59:138-141, 1997.
    • (1997) Sankhya Ser. , vol.59 , pp. 138-141
    • Fan, J.1    Liu, Y.2
  • 24
    • 21344496605 scopus 로고
    • Nonparametric regression with errors in variables
    • J. Fan and Y.K. Truong. Nonparametric regression with errors in variables. Ann. Statist., 21:1900-1925, 1993.
    • (1993) Ann. Statist. , vol.21 , pp. 1900-1925
    • Fan, J.1    Truong, Y.K.2
  • 25
    • 0002054359 scopus 로고
    • The empirical characteristic function and its applications
    • A. Feuerverger and R.A. Mureika. The empirical characteristic function and its applications. Ann. Statist., 5:88-97, 1977.
    • (1977) Ann. Statist. , vol.5 , pp. 88-97
    • Feuerverger, A.1    Mureika, R.A.2
  • 28
    • 0011629004 scopus 로고    scopus 로고
    • Data-driven deconvolution
    • S.H. Hesse. Data-driven deconvolution. J. Nonparametr. Statist., 10:343-373, 1999.
    • (1999) J. Nonparametr. Statist. , vol.10 , pp. 343-373
    • Hesse, S.H.1
  • 29
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58:13-30, 1963.
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 30
    • 33751013276 scopus 로고    scopus 로고
    • Integrated square error asymptotics for supersmooth deconvolution
    • H. Holzmann and L. Boysen. Integrated square error asymptotics for supersmooth deconvolution. Scand. J. Statist., 33:849-860, 2006.
    • (2006) Scand. J. Statist. , vol.33 , pp. 849-860
    • Holzmann, H.1    Boysen, L.2
  • 32
    • 84988058829 scopus 로고
    • A consistent nonparametric density estimator for the deconvolution problem
    • M.C. Liu and R.L. Taylor. A consistent nonparametric density estimator for the deconvolution problem. Canad. J. Statist., 17:427-438, 1989.
    • (1989) Canad. J. Statist. , vol.17 , pp. 427-438
    • Liu, M.C.1    Taylor, R.L.2
  • 34
    • 34248474317 scopus 로고
    • Option pricing when underlying stock returns are discontinuous
    • R.C. Merton. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ., 3:125-144, 1976.
    • (1976) J. Financ. Econ. , vol.3 , pp. 125-144
    • Merton, R.C.1
  • 35
    • 33646404920 scopus 로고    scopus 로고
    • Density estimation with normal measurement error with un-known variance
    • A. Meister. Density estimation with normal measurement error with un-known variance. Stat. Sinica 16:195-211, 2006.
    • (2006) Stat. Sinica , vol.16 , pp. 195-211
    • Meister, A.1
  • 38
    • 38249019182 scopus 로고
    • Rates of convergence of some estimators in a class of deconvolution problems
    • L.A. Stefanski. Rates of convergence of some estimators in a class of deconvolution problems. Statist. Probab. Lett., 9:229-235, 1990.
    • (1990) Statist. Probab. Lett. , vol.9 , pp. 229-235
    • Stefanski, L.A.1
  • 39
    • 84972949113 scopus 로고
    • Deconvoluting kernel density estimators
    • L.A. Stefanski and R.J. Caroll. Deconvoluting kernel density estimators. Statistics, 21:169-184, 1990.
    • (1990) Statistics , vol.21 , pp. 169-184
    • Stefanski, L.A.1    Caroll, R.J.2
  • 44
    • 47249104613 scopus 로고    scopus 로고
    • A kernel type nonparametric density estimator for decompounding
    • B. van Es, S. Gugushvili, and P. Spreij. A kernel type nonparametric density estimator for decompounding. Bernoulli, 13:672-694, 2007.
    • (2007) Bernoulli , vol.13 , pp. 672-694
    • Van Es, B.1    Gugushvili, S.2    Spreij, P.3
  • 45
    • 0442313365 scopus 로고    scopus 로고
    • Asymptotic normality of nonparametric kernel type estimators: Crossing the Cauchy boundary
    • A.J. van Es and H.-W. Uh. Asymptotic normality of nonparametric kernel type estimators: crossing the Cauchy boundary. J. Nonparametr. Statist., 16:261-277, 2004.
    • (2004) J. Nonparametr. Statist. , vol.16 , pp. 261-277
    • Van Es, A.J.1    Uh, H.-W.2
  • 46
    • 24344450865 scopus 로고    scopus 로고
    • Asymptotic normality of kernel-type deconvolution estimators
    • A.J. van Es and H.-W. Uh. Asymptotic normality of kernel-type deconvolution estimators. Scand. J. Statist., 32:467-483, 2005.
    • (2005) Scand. J. Statist. , vol.32 , pp. 467-483
    • Van Es, A.J.1    Uh, H.-W.2
  • 47
    • 0032519224 scopus 로고    scopus 로고
    • Finite sample performance of deconvolving density estimators
    • M.P. Wand. Finite sample performance of deconvolving density estimators. Statist. Probab. Lett., 37:131-139, 1998.
    • (1998) Statist. Probab. Lett. , vol.37 , pp. 131-139
    • Wand, M.P.1
  • 50
    • 0002055609 scopus 로고
    • Fourier methods for estimating mixing densities and distributions
    • C.H. Zhang. Fourier methods for estimating mixing densities and distributions. Ann. Statist., 18:806-831, 1990.
    • (1990) Ann. Statist. , vol.18 , pp. 806-831
    • Zhang, C.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.