메뉴 건너뛰기




Volumn 32, Issue 3, 2005, Pages 467-483

Asymptotic normality of kernel-type deconvolution estimators

Author keywords

Asymptotic normality; Deconvolution; Kernel estimation

Indexed keywords


EID: 24344450865     PISSN: 03036898     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1467-9469.2005.00443.x     Document Type: Article
Times cited : (31)

References (21)
  • 1
    • 0001736196 scopus 로고
    • Optimal rates of convergence for deconvoluting a density
    • Carroll, R. & Hall, P. (1988). Optimal rates of convergence for deconvoluting a density. J. Am. Statist. Assoc. 83, 1184-1186.
    • (1988) J. Am. Statist. Assoc. , vol.83 , pp. 1184-1186
    • Carroll, R.1    Hall, P.2
  • 2
    • 0042910589 scopus 로고    scopus 로고
    • Deconvolution with arbitrary smooth kernels
    • Cator, E. (2001). Deconvolution with arbitrary smooth kernels. Statist. Probab. Lett. 54, 205-215.
    • (2001) Statist. Probab. Lett. , vol.54 , pp. 205-215
    • Cator, E.1
  • 3
    • 1142268196 scopus 로고    scopus 로고
    • Practical bandwidth selection in deconvolution kernel density estimation
    • Delaigle, A. & Gijbels, I. (2003a). Practical bandwidth selection in deconvolution kernel density estimation. Comp. Statist. Data Anal. 45, 249-267.
    • (2003) Comp. Statist. Data Anal. , vol.45 , pp. 249-267
    • Delaigle, A.1    Gijbels, I.2
  • 4
    • 3142599194 scopus 로고    scopus 로고
    • Bootstrap bandwidth selection in kernel density estimation from a contaminated sample
    • Delaigle, A. & Gijbels, I. (2003b). Bootstrap bandwidth selection in kernel density estimation from a contaminated sample. Ann. Inst. Statist. Math. 56, 19-47.
    • (2003) Ann. Inst. Statist. Math. , vol.56 , pp. 19-47
    • Delaigle, A.1    Gijbels, I.2
  • 5
    • 1142268196 scopus 로고    scopus 로고
    • Comparison of data-driven bandwidth selection procedures in deconvolution kernel density estimation
    • Delaigle, A. & Gijbels, I. (2004). Comparison of data-driven bandwidth selection procedures in deconvolution kernel density estimation. Comp. Statist. Data Anal. 45, 249-267.
    • (2004) Comp. Statist. Data Anal. , vol.45 , pp. 249-267
    • Delaigle, A.1    Gijbels, I.2
  • 6
    • 0000867838 scopus 로고
    • On the optimal rates of convergence for nonparametric deconvolution problems
    • Fan, J. (1991a). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19, 1257-1272.
    • (1991) Ann. Statist. , vol.19 , pp. 1257-1272
    • Fan, J.1
  • 7
    • 0002688277 scopus 로고
    • Asymptotic normality for deconvolution kernel density estimators
    • Fan, J. (1991b). Asymptotic normality for deconvolution kernel density estimators. Sankhyā Ser. A. 53, 97-110.
    • (1991) Sankhyā Ser. A. , vol.53 , pp. 97-110
    • Fan, J.1
  • 8
    • 84988123046 scopus 로고
    • Deconvolution for supersmooth distributions
    • Fan, J. (1992). Deconvolution for supersmooth distributions. Canad. J. Statist. 20, 155-169.
    • (1992) Canad. J. Statist. , vol.20 , pp. 155-169
    • Fan, J.1
  • 9
    • 0442322800 scopus 로고    scopus 로고
    • A note on asymptotic normality for deconvolution kernel density estimators
    • Fan, J. & Liu, Y. (1997). A note on asymptotic normality for deconvolution kernel density estimators. Sankhyā Ser. A. 59, 138-141.
    • (1997) Sankhyā Ser. A. , vol.59 , pp. 138-141
    • Fan, J.1    Liu, Y.2
  • 11
    • 84988058829 scopus 로고
    • A consistent nonparametric density estimator for the deconvolution problem
    • Liu, M. C. & Taylor, R. L. (1989). A consistent nonparametric density estimator for the deconvolution problem. Can. J. Statist. 17, 427-438.
    • (1989) Can. J. Statist. , vol.17 , pp. 427-438
    • Liu, M.C.1    Taylor, R.L.2
  • 13
    • 0002178640 scopus 로고
    • Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes
    • Masry, E. (1993). Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes. J. Multivariate Anal. 44, 47-68.
    • (1993) J. Multivariate Anal. , vol.44 , pp. 47-68
    • Masry, E.1
  • 14
    • 38249019182 scopus 로고
    • Rates of convergence of some estimators in a class of deconvolution problems
    • Stefanski, L. (1990). Rates of convergence of some estimators in a class of deconvolution problems. Statist. Probab. Lett. 9, 229-235.
    • (1990) Statist. Probab. Lett. , vol.9 , pp. 229-235
    • Stefanski, L.1
  • 15
    • 84972949113 scopus 로고
    • Deconvoluting kernel density estimators
    • Stefanski, L. & Carroll, R. (1990). Deconvoluting kernel density estimators. Statistics. 21, 169-184.
    • (1990) Statistics. , vol.21 , pp. 169-184
    • Stefanski, L.1    Carroll, R.2
  • 16
    • 0442322799 scopus 로고    scopus 로고
    • PhD thesis. University of Amsterdam, Amsterdam
    • Uh, H.-W. (2003) Kernel deconvolution, PhD thesis. University of Amsterdam, Amsterdam.
    • (2003) Kernel Deconvolution
    • Uh, H.-W.1
  • 17
    • 0032138291 scopus 로고    scopus 로고
    • Simple kernel estimators for certain nonparametric deconvolution problems
    • Van Es, A. J. & Kok, A. R. (1998). Simple kernel estimators for certain nonparametric deconvolution problems. Statist. Probab. Lett. 39, 151-160.
    • (1998) Statist. Probab. Lett. , vol.39 , pp. 151-160
    • Van Es, A.J.1    Kok, A.R.2
  • 18
    • 0442313365 scopus 로고    scopus 로고
    • Asymptotic normality of nonparametric kernel type estimators: Crossing the Cauchy boundary
    • Van Es, A. J. & Uh, H.-W (2004). Asymptotic normality of nonparametric kernel type estimators: crossing the Cauchy boundary. J. Nonparametr. Stat. 16, 261-277.
    • (2004) J. Nonparametr. Stat. , vol.16 , pp. 261-277
    • Van Es, A.J.1    Uh, H.-W.2
  • 19
    • 0032519224 scopus 로고    scopus 로고
    • Finite sample performance of deconvolving kernel density estimators
    • Wand, M. P. (1998). Finite sample performance of deconvolving kernel density estimators. Statist. Probab. Lett. 37, 131-139.
    • (1998) Statist. Probab. Lett. , vol.37 , pp. 131-139
    • Wand, M.P.1
  • 21
    • 0002055609 scopus 로고
    • Fourier methods for estimating mixing densities and distributions
    • Zhang C. H. (1990). Fourier methods for estimating mixing densities and distributions. Ann. Statist. 18, 806-831.
    • (1990) Ann. Statist. , vol.18 , pp. 806-831
    • Zhang, C.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.