메뉴 건너뛰기




Volumn 16, Issue 1, 2006, Pages 195-211

Density estimation with normal measurement error with unknown variance

Author keywords

Deconvolution; Errors in variables; Inversion problems; Nonparametric estimation; Reconstruction

Indexed keywords


EID: 33646404920     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (53)

References (20)
  • 1
    • 33646426078 scopus 로고    scopus 로고
    • Minimax estimation of the noise level and of the deconvo-lution density in a semiparametric convolution model
    • To appear
    • Butucea, C. and Matias, C. (2004). Minimax estimation of the noise level and of the deconvo-lution density in a semiparametric convolution model. To appear in Bernoulli.
    • (2004) Bernoulli
    • Butucea, C.1    Matias, C.2
  • 2
    • 0001736196 scopus 로고
    • Optimal rates of convergence for deconvolving a density
    • Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83, 1184-1186.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 1184-1186
    • Carroll, R.J.1    Hall, P.2
  • 3
    • 1042267765 scopus 로고    scopus 로고
    • Low order approximations in deconvolution and regression with errors in variables
    • Carroll, R. J. and Hall, P. (2004). Low order approximations in deconvolution and regression with errors in variables. J. Roy. Statist. Soc. Ser. B 66, 31-46.
    • (2004) J. Roy. Statist. Soc. Ser. B , vol.66 , pp. 31-46
    • Carroll, R.J.1    Hall, P.2
  • 5
    • 1142268196 scopus 로고    scopus 로고
    • Comparison of data-driven bandwidth selection procedures in deconvolution kernel density estimation
    • Delaigle, A. and Gijbels, I. (2004a). Comparison of data-driven bandwidth selection procedures in deconvolution kernel density estimation. Comput. Statist. Data Anal. 45, 249-267.
    • (2004) Comput. Statist. Data Anal. , vol.45 , pp. 249-267
    • Delaigle, A.1    Gijbels, I.2
  • 6
    • 3142599194 scopus 로고    scopus 로고
    • Bootstrap bandwidth selection in kernel density estimation from a contaminated sample
    • Delaigle, A. and Gijbels, I. (2004b). Bootstrap bandwidth selection in kernel density estimation from a contaminated sample. Ann. Inst. Statist. Math. 56, 19-47.
    • (2004) Ann. Inst. Statist. Math. , vol.56 , pp. 19-47
    • Delaigle, A.1    Gijbels, I.2
  • 7
    • 84988101319 scopus 로고
    • Consistent deconvolution in density estimation
    • Devroye, L. (1989). Consistent deconvolution in density estimation. Canad. J. Statist. 17, 235-239.
    • (1989) Canad. J. Statist. , vol.17 , pp. 235-239
    • Devroye, L.1
  • 9
    • 0031533944 scopus 로고    scopus 로고
    • Density estimation for the case of supersmooth measurement error
    • Efromovich, S. (1997). Density estimation for the case of supersmooth measurement error. J. Amer. Statist. Assoc. 92, 526-535.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 526-535
    • Efromovich, S.1
  • 10
    • 0000867838 scopus 로고
    • On the optimal rates of convergence for non-parametric deconvolution problems
    • Fan, J. (1991). On the optimal rates of convergence for non-parametric deconvolution problems. Ann. Statist. 19, 1257-1272.
    • (1991) Ann. Statist. , vol.19 , pp. 1257-1272
    • Fan, J.1
  • 11
    • 21144459605 scopus 로고
    • Adaptively local one-dimensional subproblems with application to a deconvolution problem
    • Fan, J. (1993). Adaptively local one-dimensional subproblems with application to a deconvolution problem. Ann. Statist. 21, 600-610.
    • (1993) Ann. Statist. , vol.21 , pp. 600-610
    • Fan, J.1
  • 12
    • 5644275526 scopus 로고    scopus 로고
    • Optimal iterative density deconvolution
    • Hesse, C. H. and Meister, A. (2004). Optimal iterative density deconvolution. J.J. Nonparametr. Stat. 16, 879-900.
    • (2004) J.J. Nonparametr. Stat. , vol.16 , pp. 879-900
    • Hesse, C.H.1    Meister, A.2
  • 14
    • 84988058829 scopus 로고
    • A consistent nonparametric density estimator for the deconvolution problem
    • Liu, M. C. and Taylor, R. C. (1989). A consistent nonparametric density estimator for the deconvolution problem. Canad. J. Statist. 17, 427-438.
    • (1989) Canad. J. Statist. , vol.17 , pp. 427-438
    • Liu, M.C.1    Taylor, R.C.2
  • 15
    • 0036997830 scopus 로고    scopus 로고
    • Semiparametric deconvolution with unknown noise variance
    • Matias, C. (2002). Semiparametric deconvolution with unknown noise variance. ESAIM. Probab. Stat. 6, 271-292.
    • (2002) ESAIM. Probab. Stat. , vol.6 , pp. 271-292
    • Matias, C.1
  • 17
    • 33646433672 scopus 로고    scopus 로고
    • Deconvolution density estimation with a testing procedure for the error distribution
    • University of Stuttgart, Germany
    • Meister, A. (2004a). Deconvolution density estimation with a testing procedure for the error distribution. Technical Report, University of Stuttgart, Germany.
    • (2004) Technical Report
    • Meister, A.1
  • 18
    • 13244287837 scopus 로고    scopus 로고
    • On the effect of misspecifying the error density in a deconvolution problem
    • Meister, A. (2004b). On the effect of misspecifying the error density in a deconvolution problem. Canad. J. Statist. 32, 439-449.
    • (2004) Canad. J. Statist. , vol.32 , pp. 439-449
    • Meister, A.1
  • 19
    • 0009373055 scopus 로고    scopus 로고
    • On the effect of estimating the error density in nonparametric deconvolution
    • Neumann, M. H. (1997). On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Stat. 7, 307-330.
    • (1997) J. Nonparametr. Stat. , vol.7 , pp. 307-330
    • Neumann, M.H.1
  • 20
    • 84972949113 scopus 로고
    • Deconvoluting kernel density estimators
    • Stefanski, L. A. and Carroll, R. J. (1990). Deconvoluting kernel density estimators. Statistics 21, 169-184.
    • (1990) Statistics , vol.21 , pp. 169-184
    • Stefanski, L.A.1    Carroll, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.