메뉴 건너뛰기




Volumn 5758 LNCS, Issue , 2009, Pages 41-60

Adaptive anomaly detection via self-calibration and dynamic updating

Author keywords

Anomaly detection; Sanitization; Self calibrate; Self update

Indexed keywords

ADAPTIVE MODELS; ANOMALY DETECTION; AUTOMATIC DETERMINATION; DETECTION RATES; FALSE POSITIVE; FULLY AUTOMATED CALIBRATIONS; HUMAN EXPERT; HUMAN OPERATOR; INCOMING TRAFFIC; INTERNAL STATE; MAINTENANCE CYCLES; ON-LINE FASHION; OPTIMAL PARAMETER; OPTIMAL SELECTION; PERFORMANCE ISSUES; SANITIZATION; SANITIZATION PROCESS; SELF CALIBRATION; TRAINING DATA; TRAINING DATA SETS; TRAINING PHASE; WORST CASE;

EID: 76649108863     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04342-0_3     Document Type: Conference Paper
Times cited : (26)

References (31)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123-140 (1996)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 80053403826 scopus 로고    scopus 로고
    • Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, 1857, pp. 1-15. Springer, Heidelberg (2000)
    • Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1-15. Springer, Heidelberg (2000)
  • 7
    • 0344324689 scopus 로고    scopus 로고
    • Metacost: A general method for making classifiers cost-sensitive
    • Domingos, P.: Metacost: A general method for making classifiers cost-sensitive. In: Knowledge Discovery and Data Mining, pp. 155-164 (1999)
    • (1999) Knowledge Discovery and Data Mining , pp. 155-164
    • Domingos, P.1
  • 11
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: European Conference on Computational Learning Theory, pp. 23-37 (1995)
    • (1995) European Conference on Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 84874004542 scopus 로고    scopus 로고
    • Meta-learning, model selection, and example selection in machine learning domains with concept drift
    • Knowledge Discovery, Adaptivity
    • Klinkenberg, R.: Meta-learning, model selection, and example selection in machine learning domains with concept drift. In: Learning - Knowledge Discovery - Adaptivity (2005)
    • (2005) Learning
    • Klinkenberg, R.1
  • 16
    • 0036038437 scopus 로고    scopus 로고
    • Service Specific Anomaly Detection for Network Intrusion Detection
    • Madrid, Spain
    • Kruegel, C., Toth, T., Kirda, E.: Service Specific Anomaly Detection for Network Intrusion Detection. In: Symposium on Applied Computing (SAC), Madrid, Spain (2002)
    • (2002) Symposium on Applied Computing (SAC)
    • Kruegel, C.1    Toth, T.2    Kirda, E.3
  • 19
    • 27544498978 scopus 로고    scopus 로고
    • Polygraph: Automatically Generating Signatures for Polymorphic Worms
    • Oakland, CA
    • Newsome, J., Karp, B., Song, D.: Polygraph: Automatically Generating Signatures for Polymorphic Worms. In: IEEE Security and Privacy, Oakland, CA (2005)
    • (2005) IEEE Security and Privacy
    • Newsome, J.1    Karp, B.2    Song, D.3
  • 20
    • 26444436687 scopus 로고    scopus 로고
    • Pietraszek, T.: Using Adaptive Alert Classification to Reduce False Positives in Intrusion Detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, 3224, pp. 102-124. Springer, Heidelberg (2004)
    • Pietraszek, T.: Using Adaptive Alert Classification to Reduce False Positives in Intrusion Detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 102-124. Springer, Heidelberg (2004)
  • 23
    • 49749086726 scopus 로고    scopus 로고
    • Cross-disciplinary perspectives on meta-learning for algorithm selection
    • Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1) (2008), http://dblp.uni-trier.de/ db/journals/csur/csur41.html#Smith-Miles08
    • (2008) ACM Comput. Surv , vol.41 , Issue.1
    • Smith-Miles, K.1
  • 25
    • 76649144040 scopus 로고    scopus 로고
    • Song, Y., Keromytis, A.D., Stolfo, S.J.: Spectrogram: A Mixture-of-Markov-Chains Model for Anomaly Detection in Web Traffic. In: Proceedings of the 16th Annual Network and Distributed System Security Symposium, NDSS (2009)
    • Song, Y., Keromytis, A.D., Stolfo, S.J.: Spectrogram: A Mixture-of-Markov-Chains Model for Anomaly Detection in Web Traffic. In: Proceedings of the 16th Annual Network and Distributed System Security Symposium, NDSS (2009)
  • 28
    • 0038011184 scopus 로고    scopus 로고
    • Mimicry Attacks on Host-Based Intrusion Detection Systems
    • Wagner, D., Soto, P.: Mimicry Attacks on Host-Based Intrusion Detection Systems. In: ACM CCS (2002)
    • (2002) ACM CCS
    • Wagner, D.1    Soto, P.2
  • 29
    • 33745641552 scopus 로고    scopus 로고
    • Wang, K., Cretu, G., Stolfo, S.J.: Anomalous Payload-based Worm Detection and Signature Generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, 3858, pp. 227-246. Springer, Heidelberg (2006)
    • Wang, K., Cretu, G., Stolfo, S.J.: Anomalous Payload-based Worm Detection and Signature Generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 227-246. Springer, Heidelberg (2006)
  • 30
    • 33750335757 scopus 로고    scopus 로고
    • Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Resistant to Mimicry Attack. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, 4219, pp. 226-248. Springer, Heidelberg (2006)
    • Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Resistant to Mimicry Attack. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 226-248. Springer, Heidelberg (2006)
  • 31
    • 0026692226 scopus 로고
    • Stacked Generalization
    • Wolpert, D.: Stacked Generalization. Neural Networks 5, 241-259 (1992)
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.