메뉴 건너뛰기




Volumn 5878 LNCS, Issue , 2009, Pages 1024-1033

Worst-case and smoothed analysis of k-means clustering with Bregman divergences

Author keywords

[No Author keywords available]

Indexed keywords

BREGMAN DIVERGENCES; DATA POINTS; DATA SETS; EUCLIDEAN; GENERAL CLASS; K-MEANS; K-MEANS ALGORITHM; K-MEANS CLUSTERING; K-MEANS METHOD; LOWER BOUNDS; RELATIVE ENTROPY; SEMI-RANDOM; SIMILARITY MEASURE; SMOOTHED ANALYSIS; SQUARED EUCLIDEAN DISTANCE; STANDARD DEVIATION; THEORY AND PRACTICE; WEB PAGE;

EID: 75649121507     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-10631-6_103     Document Type: Conference Paper
Times cited : (12)

References (15)
  • 3
    • 77952368190 scopus 로고    scopus 로고
    • Arthur, D., Manthey, B., Röglin, H.: k-means has polynomial smoothed complexity. In: Proc. of the 50th Ann. IEEE Symp. on Found. of Computer Science, FOCS (to appear, 2009)
    • Arthur, D., Manthey, B., Röglin, H.: k-means has polynomial smoothed complexity. In: Proc. of the 50th Ann. IEEE Symp. on Found. of Computer Science, FOCS (to appear, 2009)
  • 4
    • 75649123332 scopus 로고    scopus 로고
    • Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method
    • Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method. SIAM Journal on Computing 39(2), 766-782 (2009)
    • (2009) SIAM Journal on Computing , vol.39 , Issue.2 , pp. 766-782
    • Arthur, D.1    Vassilvitskii, S.2
  • 6
    • 0442289065 scopus 로고    scopus 로고
    • Survey of clustering data mining techniques. Technical report, Accrue Software
    • San Jose, CA, USA 2002
    • Berkhin, P.: Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA, USA (2002)
    • Berkhin, P.1
  • 7
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • Dhillon, I.S., Mallela, S., Kumar, R.: A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research 3, 1265-1287 (2003)
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 11
    • 0033707141 scopus 로고    scopus 로고
    • Variance-based k-clustering algorithms by Voronoi diagrams and randomization
    • Inaba, M., Katoh, N., Imai, H.: Variance-based k-clustering algorithms by Voronoi diagrams and randomization. IEICE Transactions on Information and Systems E83-D(6), 1199-1206 (2000)
    • (2000) IEICE Transactions on Information and Systems , vol.E83-D , Issue.6 , pp. 1199-1206
    • Inaba, M.1    Katoh, N.2    Imai, H.3
  • 14
    • 4243066295 scopus 로고    scopus 로고
    • Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time
    • Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51(3), 385-463 (2004)
    • (2004) Journal of the ACM , vol.51 , Issue.3 , pp. 385-463
    • Spielman, D.A.1    Teng, S.-H.2
  • 15
    • 70949100815 scopus 로고    scopus 로고
    • Vattani, A.: k-means requires exponentially many iterations even in the plane. In: Proc. of the 25th ACM Symp. on Computational Geometry (SoCG), pp. 324-332 (2009)
    • Vattani, A.: k-means requires exponentially many iterations even in the plane. In: Proc. of the 25th ACM Symp. on Computational Geometry (SoCG), pp. 324-332 (2009)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.