-
3
-
-
38749098136
-
Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method
-
IEEE Computer Society
-
David Arthur and Sergei Vassilvitskii. Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method. In Proc. of the 47th Ann. IEEE Symp. on Foundations of Comp. Science (FOCS), pages 153-164. IEEE Computer Society, 2006.
-
(2006)
Proc. of the 47th Ann. IEEE Symp. on Foundations of Comp. Science (FOCS)
, pp. 153-164
-
-
Arthur, D.1
Vassilvitskii, S.2
-
5
-
-
0442289065
-
-
Technical report, Accrue Software, San Jose, CA, USA
-
Pavel Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA, USA, 2002.
-
(2002)
Survey of Clustering Data Mining Techniques
-
-
Berkhin, P.1
-
7
-
-
11244293701
-
How fast is the k-means method?
-
Sariel Har-Peled and Bardia Sadri. How fast is the k-means method? Algorithmica, 41(3):185-202, 2005.
-
(2005)
Algorithmica
, vol.41
, Issue.3
, pp. 185-202
-
-
Har-Peled, S.1
Sadri, B.2
-
8
-
-
0033707141
-
Variance-based k-clustering algorithms by Voronoi diagrams and randomization
-
Mary Inaba, Naoki Katoh, and Hiroshi Imai. Variance-based k-clustering algorithms by Voronoi diagrams and randomization. IEICE Transactions on Information and Systems, E83-D(6):1199-1206, 2000. (Pubitemid 30884852)
-
(2000)
IEICE Transactions on Information and Systems
, vol.E83-D
, Issue.6
, pp. 1199-1206
-
-
Inaba, M.1
Katoh, N.2
Imai, H.3
-
9
-
-
11244288693
-
A simple linear time (1 + ε)-approximation algorithm for k-means clustering in any dimensions
-
Proceedings - 45th Annual IEEE Symposium on Foundations of Computer Sciences, FOCS 2004
-
Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1 + ε)-approximation algorithm for k-means clustering in any dimensions. In Proc. of the 45th Ann. IEEE Symp. on Foundations of Comp. Science (FOCS), pages 454-462, 2004. (Pubitemid 40575306)
-
(2004)
Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
, pp. 454-462
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
11
-
-
0034417244
-
On approximate geometric k-clustering
-
Jiří Matoušek. On approximate geometric k-clustering. Discrete and Computational Geometry, 24(1):61-84, 2000.
-
(2000)
Discrete and Computational Geometry
, vol.24
, Issue.1
, pp. 61-84
-
-
Matoušek, J.1
-
12
-
-
4243066295
-
Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time
-
Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385-463, 2004.
-
(2004)
Journal of the ACM
, vol.51
, Issue.3
, pp. 385-463
-
-
Spielman, D.A.1
Teng, S.-H.2
-
13
-
-
38049132149
-
Smoothed analysis of algorithms and heuristics: Progress and open questions
-
Luis M. Pardo, Allan Pinkus, Endre Süli, and Michael J. Todd, editors, Cambridge University Press
-
Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms and heuristics: Progress and open questions. In Luis M. Pardo, Allan Pinkus, Endre Süli, and Michael J. Todd, editors, Foundations of Computational Mathematics, Santander 2005, pages 274-342. Cambridge University Press, 2006.
-
(2006)
Foundations of Computational Mathematics, Santander 2005
, pp. 274-342
-
-
Spielman, D.A.1
Teng, S.-H.2
|