-
1
-
-
0003803285
-
-
University Science Books, Mill Valley
-
V. A. Bloomfield, D. M. Crothers, and I. Tinoco, Jr., Nucleic Acids Structures, Properties and Functions (University Science Books, Mill Valley, 2000).
-
(2000)
Nucleic Acids Structures, Properties and Functions
-
-
Bloomfield, V.A.1
Crothers, D.M.2
Tinoco Jr., I.3
-
2
-
-
0032771580
-
-
10.1016/S0167-7799(98)01241-4;
-
D. J. Graves, Trends Biotechnol. 17, 127 (1999) 10.1016/S0167-7799(98) 01241-4
-
(1999)
Trends Biotechnol.
, vol.17
, pp. 127
-
-
Graves, D.J.1
-
5
-
-
33646182577
-
-
10.1088/0953-8984/18/18/S02
-
H. Binder, J. Phys.: Condens. Matter 18, S491 (2006). 10.1088/0953-8984/18/18/S02
-
(2006)
J. Phys.: Condens. Matter
, vol.18
, pp. 491
-
-
Binder, H.1
-
7
-
-
75349094274
-
-
Up to five nucleotides to the edges to avoid terminal mismatches and such that the minimal distance between mismatches in the same strand is of five nucleotides.
-
Up to five nucleotides to the edges to avoid terminal mismatches and such that the minimal distance between mismatches in the same strand is of five nucleotides.
-
-
-
-
8
-
-
75349101645
-
-
The buffer is described in US Patent 6753145.
-
The buffer is described in US Patent 6753145.
-
-
-
-
10
-
-
85035214096
-
-
10.1103/PhysRevE.68.011906
-
F. Naef and M. O. Magnasco, Phys. Rev. E 68, 011906 (2003). 10.1103/PhysRevE.68.011906
-
(2003)
Phys. Rev. e
, vol.68
, pp. 011906
-
-
Naef, F.1
Magnasco, M.O.2
-
11
-
-
0037215734
-
-
10.1016/S0006-3495(03)74837-1
-
G. Bhanot, Biophys. J. 84, 124 (2003). 10.1016/S0006-3495(03)74837-1
-
(2003)
Biophys. J.
, vol.84
, pp. 124
-
-
Bhanot, G.1
-
12
-
-
32544449970
-
-
10.1016/j.physa.2005.09.067
-
E. Carlon and T. Heim, Physica A 362, 433 (2006). 10.1016/j.physa.2005. 09.067
-
(2006)
Physica A
, vol.362
, pp. 433
-
-
Carlon, E.1
Heim, T.2
-
13
-
-
66049097750
-
-
10.1103/PhysRevLett.102.218301
-
T. Naiser, J. Kayser, T. Mai, W. Michel, and A. Ott, Phys. Rev. Lett. 102, 218301 (2009). 10.1103/PhysRevLett.102.218301
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 218301
-
-
Naiser, T.1
Kayser, J.2
Mai, T.3
Michel, W.4
Ott, A.5
-
14
-
-
85036155972
-
-
10.1103/PhysRevE.66.041905;
-
A. Vainrub and B. M. Pettitt, Phys. Rev. E 66, 041905 (2002) 10.1103/PhysRevE.66.041905
-
(2002)
Phys. Rev. e
, vol.66
, pp. 041905
-
-
Vainrub, A.1
Pettitt, B.M.2
-
17
-
-
75349111764
-
-
We note that the slope in the nonequilibrium regime of Fig. is somewhat smaller than that of Figs. This is probably due to the protocol followed: at time t=0 both the solution containing the target molecules and the array are at room temperature. They are then placed into an oven for the duration of the experiment at a temperature T=65°C. Short time behavior could then be influenced by the initial room-temperature hybridization.
-
We note that the slope in the nonequilibrium regime of Fig. is somewhat smaller than that of Figs. This is probably due to the protocol followed: at time t=0 both the solution containing the target molecules and the array are at room temperature. They are then placed into an oven for the duration of the experiment at a temperature T=65°C. Short time behavior could then be influenced by the initial room-temperature hybridization.
-
-
-
-
20
-
-
33750009863
-
-
10.1016/j.ab.2006.07.042
-
M. Glazer, Anal. Biochem. 358, 225 (2006). 10.1016/j.ab.2006.07.042
-
(2006)
Anal. Biochem.
, vol.358
, pp. 225
-
-
Glazer, M.1
-
21
-
-
75349093792
-
-
We estimated Δ GPM (L=30) =-14.5 kcal/mol from the fits of Fig., using extensivity we expect Δ GPM (L=25) 0.83Δ GPM (L=30) =-12 kcal/mol.
-
We estimated Δ GPM (L=30) =-14.5 kcal/mol from the fits of Fig., using extensivity we expect Δ GPM (L=25) 0.83Δ GPM (L=30) =-12 kcal/mol.
-
-
-
|