-
1
-
-
0037366617
-
-
(a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811.
-
(2003)
Chem. Rev
, vol.103
, pp. 811
-
-
Basavaiah, D.1
Rao, A.J.2
Satyanarayana, T.3
-
2
-
-
0037460191
-
-
(b) Matsuya, Y.; Hayashi, K.; Nemoto, H. J. Am. Chem. Soc. 2003, 125, 646.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 646
-
-
Matsuya, Y.1
Hayashi, K.2
Nemoto, H.3
-
4
-
-
34548185871
-
-
(d) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581.
-
(2007)
Chem. Soc. Rev
, vol.36
, pp. 1581
-
-
Basavaiah, D.1
Rao, K.V.2
Reddy, R.J.3
-
5
-
-
75349091157
-
-
Some of the techniques that have been used to improve the rate of BH reaction include microwave irradiation, ultrasound, temperature, high pressure conditions, silica gel solid-phase medium, and so on
-
Some of the techniques that have been used to improve the rate of BH reaction include microwave irradiation, ultrasound, temperature, high pressure conditions, silica gel solid-phase medium, and so on.
-
-
-
-
6
-
-
0013308184
-
-
(a) Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. 2002, 4, 4723.
-
(2002)
Org. Lett
, vol.4
, pp. 4723
-
-
Cai, J.1
Zhou, Z.2
Zhao, G.3
Tang, C.4
-
7
-
-
4644231912
-
-
(b) Faltin, C.; Fleming, E. M.; Connon, S. J. J. Org. Chem. 2004, 69, 6496.
-
(2004)
J. Org. Chem
, vol.69
, pp. 6496
-
-
Faltin, C.1
Fleming, E.M.2
Connon, S.J.3
-
10
-
-
17044437071
-
-
(a) Aggarwal, V. K.; Fulford, S. Y.; Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2005, 44, 1706.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 1706
-
-
Aggarwal, V.K.1
Fulford, S.Y.2
Lloyd-Jones, G.C.3
-
11
-
-
37849014325
-
-
(b) Robiette, R.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. 2007, 129, 15513.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 15513
-
-
Robiette, R.1
Aggarwal, V.K.2
Harvey, J.N.3
-
13
-
-
75349083615
-
-
(d) Roy, D.; Patel, C.; Sunoj, R. B. J. Org. Chem. 2009, 74, 3936.
-
(2009)
J. Org. Chem
, vol.74
, pp. 3936
-
-
Roy, D.1
Patel, C.2
Sunoj, R.B.3
-
14
-
-
84948256942
-
-
(a) Ameer, F.; Drewes, S. E.; Freese, S.; Kaye, P. T. Synth. Commun. 1988, 18, 495.
-
(1988)
Synth. Commun
, vol.18
, pp. 495
-
-
Ameer, F.1
Drewes, S.E.2
Freese, S.3
Kaye, P.T.4
-
15
-
-
0027426955
-
-
(a) Kündig, E. P.; Xu, L. H.; Romanens, P.; Bernardinelli, G. Tetrahedron Lett. 1993, 34, 7049.
-
(1993)
Tetrahedron Lett
, vol.34
, pp. 7049
-
-
Kündig, E.P.1
Xu, L.H.2
Romanens, P.3
Bernardinelli, G.4
-
16
-
-
0000516236
-
-
(b) Aggarwal, V. K.; Mereu, A.; Tarver, G. J.; McCague, R. J. Org. Chem. 1998, 63, 7183.
-
(1998)
J. Org. Chem
, vol.63
, pp. 7183
-
-
Aggarwal, V.K.1
Mereu, A.2
Tarver, G.J.3
McCague, R.4
-
17
-
-
0033582724
-
-
(c) Ono, M.; Nishimura, K.; Nagaoka, Y.; Tomioka, K. Tetrahedron Lett. 1999, 40, 1509.
-
(1999)
Tetrahedron Lett
, vol.40
, pp. 1509
-
-
Ono, M.1
Nishimura, K.2
Nagaoka, Y.3
Tomioka, K.4
-
19
-
-
0032564002
-
-
Kataoka, T.; Iwama, T.; Tsujiyama, S.-I.; Iwamura, T.; Watanaba, S.-I. Tetrahedron 1998, 54, 11813.
-
(1998)
Tetrahedron
, vol.54
, pp. 11813
-
-
Kataoka, T.1
Iwama, T.2
Tsujiyama, S.-I.3
Iwamura, T.4
Watanaba, S.-I.5
-
21
-
-
0001015876
-
-
(b) Parmee, E. R.; Tempkin, O.; Masamune, S.; Abiko, A. J. Am. Chem. Soc. 1991, 113, 9365.
-
(1991)
J. Am. Chem. Soc
, vol.113
, pp. 9365
-
-
Parmee, E.R.1
Tempkin, O.2
Masamune, S.3
Abiko, A.4
-
22
-
-
0037160423
-
-
(c) Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 392
-
-
Evans, D.A.1
Tedrow, J.S.2
Shaw, J.T.3
Downey, C.W.4
-
23
-
-
0037433497
-
-
(d) Hamada, T.; Manabe, K.; Ishikawa, S.; Nagayama, S.; Shiro, M.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 2989.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 2989
-
-
Hamada, T.1
Manabe, K.2
Ishikawa, S.3
Nagayama, S.4
Shiro, M.5
Kobayashi, S.6
-
24
-
-
23944505182
-
-
(e) Avenoza, A.; Busto, J. H.; Canal, N.; Peregrina, J. M.; Pérez-Fernández, M. Org. Lett. 2005, 7, 3597.
-
(2005)
M. Org. Lett
, vol.7
, pp. 3597
-
-
Avenoza, A.1
Busto, J.H.2
Canal, N.3
Peregrina, J.M.4
Fernández, P.5
-
28
-
-
0000775995
-
-
(b) Sarko, C. R.; Guch, I. C.; DiMare, M. J. Org. Chem. 1994, 59, 705.
-
(1994)
J. Org. Chem
, vol.59
, pp. 705
-
-
Sarko, C.R.1
Guch, I.C.2
DiMare, M.3
-
29
-
-
0028070796
-
-
(c) Terada, M.; Motoyama, Y.; Mikami, K. Tetrahedron Lett. 1994, 35, 6693.
-
(1994)
Tetrahedron Lett
, vol.35
, pp. 6693
-
-
Terada, M.1
Motoyama, Y.2
Mikami, K.3
-
30
-
-
0000826366
-
-
(d) Seebach, D.; Dahinden, R.; Marti, R. E.; Beck, A. K.; Plattner, D. A.; Kuhnle, F. N. M. J. Org. Chem. 1995, 60, 1788.
-
(1995)
J. Org. Chem
, vol.60
, pp. 1788
-
-
Seebach, D.1
Dahinden, R.2
Marti, R.E.3
Beck, A.K.4
Plattner, D.A.5
Kuhnle, F.N.M.6
-
31
-
-
0032576833
-
-
(e) Ishimaru, K.; Monda, K.; Yamamoto, Y.; Akiba, K. Tetrahedron 1998, 54, 727.
-
(1998)
Tetrahedron
, vol.54
, pp. 727
-
-
Ishimaru, K.1
Monda, K.2
Yamamoto, Y.3
Akiba, K.4
-
32
-
-
0002925544
-
-
4-promoted BH reaction:
-
4-promoted BH reaction:
-
-
-
-
33
-
-
0033992225
-
-
(b) Li, G.; Wei, H. X.; Gao, J. J.; Caputo, T. D. Tetrahedron Lett., 2000, 41, 1.
-
(2000)
Tetrahedron Lett
, vol.41
, pp. 1
-
-
Li, G.1
Wei, H.X.2
Gao, J.J.3
Caputo, T.D.4
-
34
-
-
0242291878
-
-
However anti diastereomer of P2 was observed for N-acyl benzaoxazoline: (c) You, J.; Xu, J.; Verkade, J. G. Angew. Chem., Int. Ed. 2003, 42, 5054.
-
However anti diastereomer of P2 was observed for N-acyl benzaoxazoline: (c) You, J.; Xu, J.; Verkade, J. G. Angew. Chem., Int. Ed. 2003, 42, 5054.
-
-
-
-
36
-
-
0000378281
-
-
Li, G.; Gao, J.; Wei, H. X.; Enright, M. Org. Lett. 2000, 2, 617.
-
(2000)
Org. Lett
, vol.2
, pp. 617
-
-
Li, G.1
Gao, J.2
Wei, H.X.3
Enright, M.4
-
37
-
-
0000884769
-
-
At lower temperatures (∼ -78 °C) product P2 is exclusively found, whereas at higher temperatures (rt) only P3 is identified. For example, see: (a) Shi, M, Jiang, J. K, Feng, Y. S. Org. Lett. 2000, 2, 2397
-
At lower temperatures (∼ -78 °C) product P2 is exclusively found, whereas at higher temperatures (rt) only P3 is identified. For example, see: (a) Shi, M.; Jiang, J. K.; Feng, Y. S. Org. Lett. 2000, 2, 2397.
-
-
-
-
39
-
-
0035925352
-
-
(c) Shi, M.; Jiang, J. K.; Cui, S. C.; Feng, Y. S. J. Chem. Soc., Perkin Trans. 2001, 1, 390.
-
(2001)
J. Chem. Soc., Perkin Trans
, vol.1
, pp. 390
-
-
Shi, M.1
Jiang, J.K.2
Cui, S.C.3
Feng, Y.S.4
-
42
-
-
0034733695
-
-
Kataoka, T.; Kinoshita, H.; Iwama, T.; Tsujiyama, S.-I.; Iwamura, T.; Watanabe, S.-I.; Muraoka, O.; Tanabe, G. Tetrahedron 2000, 56, 4725.
-
(2000)
Tetrahedron
, vol.56
, pp. 4725
-
-
Kataoka, T.1
Kinoshita, H.2
Iwama, T.3
Tsujiyama, S.-I.4
Iwamura, T.5
Watanabe, S.-I.6
Muraoka, O.7
Tanabe, G.8
-
43
-
-
75349089994
-
-
Frisch, M. J. et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford CT, 2004. (See Supporting Information for full citation).
-
Frisch, M. J. et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford CT, 2004. (See Supporting Information for full citation).
-
-
-
-
46
-
-
0004067957
-
-
Dunning, T. H, Jr, Hay, P. J, Schaeffer, H. F, III, Eds, Plenum Press: New York
-
(c) Methods of Electronic Structure Theory; Dunning, T. H., Jr., Hay, P. J., Schaeffer, H. F., III, Eds.; Plenum Press: New York, 1977.
-
(1977)
Methods of Electronic Structure Theory
-
-
-
47
-
-
0033731344
-
-
(a) Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811.
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 4811
-
-
Lynch, B.J.1
Fast, P.L.2
Harris, M.3
Truhlar, D.G.4
-
48
-
-
0037422363
-
-
(b) Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 1384.
-
(2003)
J. Phys. Chem. A
, vol.107
, pp. 1384
-
-
Lynch, B.J.1
Zhao, Y.2
Truhlar, D.G.3
-
50
-
-
0345491105
-
-
(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
52
-
-
33645949559
-
-
(b) Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; De Frees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
-
(1982)
J. Chem. Phys
, vol.77
, pp. 3654
-
-
Francl, M.M.1
Petro, W.J.2
Hehre, W.J.3
Binkley, J.S.4
Gordon, M.S.5
De Frees, D.J.6
Pople, J.A.7
-
53
-
-
0001508425
-
-
(c) Rassolov, V.; Pople, J. A.; Ratner, M.; Windus, T. L. J. Chem. Phys. 1998, 109, 1223.
-
(1998)
J. Chem. Phys
, vol.109
, pp. 1223
-
-
Rassolov, V.1
Pople, J.A.2
Ratner, M.3
Windus, T.L.4
-
55
-
-
0031209054
-
-
(a) Cancès, M. T.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.
-
(1997)
J. Chem. Phys
, vol.107
, pp. 3032
-
-
Cancès, M.T.1
Mennucci, B.2
Tomasi, J.3
-
57
-
-
0031553301
-
-
(c) Mennucci, B.; Cancès, E.; Tomasi, J. J. Phys. Chem. B 1997, 101, 10506.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 10506
-
-
Mennucci, B.1
Cancès, E.2
Tomasi, J.3
-
58
-
-
84962428823
-
-
(d) Tomasi, J.; Mennucci, B.; Cancès, E. J. Mol. Str.: THEOCHEM 1999, 464, 211.
-
(1999)
J. Mol. Str.: THEOCHEM
, vol.464
, pp. 211
-
-
Tomasi, J.1
Mennucci, B.2
Cancès, E.3
-
59
-
-
0542394940
-
-
A variety of titanium complexes of carbonyl compounds, which include both mono- and binuclear coordinations, are reported earlier in different contexts. See
-
(a) A variety of titanium complexes of carbonyl compounds, which include both mono- and binuclear coordinations, are reported earlier in different contexts. See: Branchadell, V.; Oliva, A. Inorg. Chem. 1995, 34, 3433.
-
(1995)
Inorg. Chem
, vol.34
, pp. 3433
-
-
Branchadell, V.1
Oliva, A.2
-
60
-
-
75349083302
-
-
In this present study,we have considered only the mononuclear titanium complexes. In the case of binuclear complexes, only those complexes where the bound aldehyde and MVK are in near vicinity can undergo C-C bond-forming reaction. However, we have optimized a few representative binuclear complexes, which were found to be higher in energy than mononuclear complexes (Figure S1 in Supporting Information).
-
(b) In this present study,we have considered only the mononuclear titanium complexes. In the case of binuclear complexes, only those complexes where the bound aldehyde and MVK are in near vicinity can undergo C-C bond-forming reaction. However, we have optimized a few representative binuclear complexes, which were found to be higher in energy than mononuclear complexes (Figure S1 in Supporting Information).
-
-
-
-
61
-
-
75349105261
-
-
The optimized geometries of 1a and 1b are provided in Supporting Information (Figures S2 and S3). These penta-coordinated complexes are identified to exhibit a preference toward an axial disposition of the carbonyl ligands.
-
The optimized geometries of 1a and 1b are provided in Supporting Information (Figures S2 and S3). These penta-coordinated complexes are identified to exhibit a preference toward an axial disposition of the carbonyl ligands.
-
-
-
-
62
-
-
75349086364
-
-
ae.
-
ae.
-
-
-
-
63
-
-
75349099671
-
-
ae during geometry optimization.
-
ae during geometry optimization.
-
-
-
-
64
-
-
75349110285
-
-
The optimized geometries of these intermediates are provided in Figure S2 in Supporting Information.
-
The optimized geometries of these intermediates are provided in Figure S2 in Supporting Information.
-
-
-
-
65
-
-
75349108533
-
-
It is also worth noting that the forward reaction for this step is more favored than the backward reaction
-
It is also worth noting that the forward reaction for this step is more favored than the backward reaction.
-
-
-
-
66
-
-
75349111016
-
-
Decreased Mulliken charges are identified on titanium in TS(1b-2b) as compared to that in 1b (see Table S2 in Supporting Information).
-
Decreased Mulliken charges are identified on titanium in TS(1b-2b) as compared to that in 1b (see Table S2 in Supporting Information).
-
-
-
-
68
-
-
0000036220
-
-
Gau, H.-M. ; Lee, C.-S.; Lin, C.-C.; Jiang, M.-K.; Ho, Y.-C.; Kuo, C.-N. J. Am. Chem. Soc. 1996, 118, 2936.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 2936
-
-
Gau, H.-M.1
Lee, C.-S.2
Lin, C.-C.3
Jiang, M.-K.4
Ho, Y.-C.5
Kuo, C.-N.6
-
69
-
-
75349094960
-
-
Under the normal experimental conditions, the cis and trans conformers could easily co-exist in equilibrium with a surmountable barrier for interconversion
-
(a) Under the normal experimental conditions, the cis and trans conformers could easily co-exist in equilibrium with a surmountable barrier for interconversion.
-
-
-
-
70
-
-
75349100028
-
-
The optimized geometries of TSs corresponding to cis-trans interconversion are given in Figure S4, and their energies at the mPW1K/6-31+G** level of theory are summarized in Table S2 in Supporting Information.
-
(b) The optimized geometries of TSs corresponding to cis-trans interconversion are given in Figure S4, and their energies at the mPW1K/6-31+G** level of theory are summarized in Table S2 in Supporting Information.
-
-
-
-
71
-
-
75349093474
-
-
Higher positive charge on titanium is noticed in the case of trans-MVK as compared to that in cis-MVK. (see Table S1 in Supporting Information).
-
Higher positive charge on titanium is noticed in the case of trans-MVK as compared to that in cis-MVK. (see Table S1 in Supporting Information).
-
-
-
-
72
-
-
0000170154
-
-
We have calculated extent of pyramidalization of the α-carbon involved in the chloride transfer step as defined by Radhakrishnan, T. P, Agranat, I. Struct. Chem. 1990, 2, 107. The calculated extent of polarization is provided in Table S3 in Supporting Information
-
We have calculated extent of pyramidalization of the α-carbon involved in the chloride transfer step as defined by Radhakrishnan, T. P.; Agranat, I. Struct. Chem. 1990, 2, 107. The calculated extent of polarization is provided in Table S3 in Supporting Information.
-
-
-
-
73
-
-
75349098681
-
-
This is partly evident from the computed Mulliken charges on titanium and oxygen atom of MVK in the corresponding TSs of the two cases see Table S1 in Supporting Information
-
This is partly evident from the computed Mulliken charges on titanium and oxygen atom of MVK in the corresponding TSs of the two cases (see Table S1 in Supporting Information).
-
-
-
-
74
-
-
75349103757
-
-
ae) both forward and backward reaction are found to be equally favored.
-
ae) both forward and backward reaction are found to be equally favored.
-
-
-
-
75
-
-
75349094121
-
-
ae are provided in Supporting Information (Figure S2).
-
ae are provided in Supporting Information (Figure S2).
-
-
-
-
76
-
-
31644433066
-
-
An interesting discussion on similar situations can be found in (i) Cass, M. E, Hib, K. K, Rzepa, H. S. J. Chem. Educ. 2006, 83, 336 and ii, accessed on August 3, 2009
-
(b) An interesting discussion on similar situations can be found in (i) Cass, M. E.; Hib, K. K.; Rzepa, H. S. J. Chem. Educ. 2006, 83, 336 and (ii) http://www.ch.ic. ac.uk/rzepa/bpr/ (accessed on August 3, 2009).
-
-
-
-
77
-
-
75349085454
-
-
The optimized transition state geometry is provided in Figure S2 in Supporting Information.
-
The optimized transition state geometry is provided in Figure S2 in Supporting Information.
-
-
-
-
80
-
-
6044260122
-
-
Itoh, Y.; Yamanaka, M.; Mikami, K. J. Am. Chem. Soc. 2004, 126, 13174.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 13174
-
-
Itoh, Y.1
Yamanaka, M.2
Mikami, K.3
-
81
-
-
75349100667
-
-
re-si(ae), respectively, during the course of geometry optimization.
-
re-si(ae), respectively, during the course of geometry optimization.
-
-
-
-
82
-
-
75349104902
-
-
The ea possibility was found only at the B3LYP gas-phase calculation.
-
The "ea" possibility was found only at the B3LYP gas-phase calculation.
-
-
-
-
83
-
-
75349085939
-
-
An illustration of how these diastereomeric transition states would lead to syn and anti product is provided in Figure S5 in Supporting Information
-
An illustration of how these diastereomeric transition states would lead to syn and anti product is provided in Figure S5 in Supporting Information.
-
-
-
-
84
-
-
75349095481
-
-
Additional possibilities involving re-re as well as re-si modes of approaches between the aldehyde and the enolate is examined. These TSs leading to diastereomeric products are provided in Figure S6 in Supporting Information.
-
Additional possibilities involving re-re as well as re-si modes of approaches between the aldehyde and the enolate is examined. These TSs leading to diastereomeric products are provided in Figure S6 in Supporting Information.
-
-
-
-
85
-
-
75349095288
-
-
The forward reaction is found be more favorable in both cases
-
The forward reaction is found be more favorable in both cases.
-
-
-
-
86
-
-
75349097568
-
-
The Kohn-Sham orbital contours of important frontier orbitals for all key TSs are provided in Figure S7 of Supporting Information
-
The Kohn-Sham orbital contours of important frontier orbitals for all key TSs are provided in Figure S7 of Supporting Information.
-
-
-
-
87
-
-
75349113076
-
-
This is in agreement with an earlier report on the aldol reaction of trichlorotitanium enolates of cyclohexanones, where a syn product has been identified. The forward reaction was found to be more favored as in the case of cis-MVK
-
This is in agreement with an earlier report on the aldol reaction of trichlorotitanium enolates of cyclohexanones, where a syn product has been identified. The forward reaction was found to be more favored as in the case of cis-MVK.
-
-
-
-
88
-
-
75349105858
-
-
See Table S6 and Figure S8 in Supporting Information for additional details on the energies and optimized geometries, respectively.
-
See Table S6 and Figure S8 in Supporting Information for additional details on the energies and optimized geometries, respectively.
-
-
-
-
89
-
-
75349114243
-
-
3 and HCl, respectively. This will lead to an underestimation of the translational entropy upon product formation. If translational freedom of independent molecules is considered, the barrier heights could be higher for the backward reaction.
-
3 and HCl, respectively. This will lead to an underestimation of the translational entropy upon product formation. If translational freedom of independent molecules is considered, the barrier heights could be higher for the backward reaction.
-
-
-
-
90
-
-
75349111778
-
-
The total entropy can be partitioned into electronic, translational, rotational, and vibrational contributions. The ΔS term, in the equation ΔG=ΔH- T(ΔS, can be calculated with respect to the infinitely separated reactants. This will yield the expression: ΔG=ΔH-T(ΔS trans)-T(ΔSrot, T(ΔSvib, Here, electronic contribution does not appear in the equation as only the ground state configuration is considered. A comprehensive list of T(ΔStrans, T(ΔSrot, and T(ΔS vib) terms are provided in Tables S7-S11 in Supporting Information. The relative changes in the translational and rotational entropy, ΔStranslational and ΔS rotational, respectively, are found to be negative, and the correspondin
-
translational.
-
-
-
|