-
2
-
-
0035969234
-
-
Hoffman, P. R.; deCathelineau, A. M.; Ogden, C. A.; Leverrier, Y.; Bratton, D. L.; Daleke, D. L.; Ridley, A. J.; Fadok, V. A.; Henson, P. M. J. Cell Biol. 2001, 155, 649-659.
-
(2001)
J. Cell Biol
, vol.155
, pp. 649-659
-
-
Hoffman, P.R.1
deCathelineau, A.M.2
Ogden, C.A.3
Leverrier, Y.4
Bratton, D.L.5
Daleke, D.L.6
Ridley, A.J.7
Fadok, V.A.8
Henson, P.M.9
-
3
-
-
23144448574
-
-
Elliot, J. I.; Surprenant, A.; Marelli-Berg, F. M.; Cooper, J. C.; Cassady-Cain, R. L.; Wooding, C.; Linton, K.; Alexander, D. R.; Higgins, C. F. Nat. Cell Biol. 2005, 8, 808-816.
-
(2005)
Nat. Cell Biol
, vol.8
, pp. 808-816
-
-
Elliot, J.I.1
Surprenant, A.2
Marelli-Berg, F.M.3
Cooper, J.C.4
Cassady-Cain, R.L.5
Wooding, C.6
Linton, K.7
Alexander, D.R.8
Higgins, C.F.9
-
4
-
-
0036829110
-
-
Ran, S.; Downes, A.; Thorpe, P. A. Cancer Res. 2002, 62, 6132-6140.
-
(2002)
Cancer Res
, vol.62
, pp. 6132-6140
-
-
Ran, S.1
Downes, A.2
Thorpe, P.A.3
-
5
-
-
23944481941
-
-
Distler, J. H. W.; Huber, L. C.; Reich, C. F., III; Gay, S.; Distler, O.; Pisetsky, D. S. Apoptosis 2005, 10, 731-741.
-
(2005)
Apoptosis
, vol.10
, pp. 731-741
-
-
Distler, J.H.W.1
Huber, L.C.2
Reich III, C.F.3
Gay, S.4
Distler, O.5
Pisetsky, D.S.6
-
8
-
-
40949141332
-
-
(a) Jennewein, M.; Lewis, M. A.; Zhao, D.; Tsyganov, E.; Slavine, N.; He, J.; Watkins, L.; Kodibagkar, V. D.; O'Kelly, S.; Kulkarni, P.; Antich, P. P.; Hermanne, A.; Rosch, F.; Mason, R. P.; Thorpe, P. E. Clin. Cancer Res. 2008, 14, 1377-1385.
-
(2008)
Clin. Cancer Res
, vol.14
, pp. 1377-1385
-
-
Jennewein, M.1
Lewis, M.A.2
Zhao, D.3
Tsyganov, E.4
Slavine, N.5
He, J.6
Watkins, L.7
Kodibagkar, V.D.8
O'Kelly, S.9
Kulkarni, P.10
Antich, P.P.11
Hermanne, A.12
Rosch, F.13
Mason, R.P.14
Thorpe, P.E.15
-
9
-
-
40949121437
-
-
(b) Krishnan, A. S.; Neves, A. A.; de Backer, M. M.; Hu, D. E.; Davletov, B.; Kettunen, M. I.; Brindle, K. M. Radiology 2008, 246, 854-862.
-
(2008)
Radiology
, vol.246
, pp. 854-862
-
-
Krishnan, A.S.1
Neves, A.A.2
de Backer, M.M.3
Hu, D.E.4
Davletov, B.5
Kettunen, M.I.6
Brindle, K.M.7
-
10
-
-
38549136860
-
-
Kenis, H.; Hofstra, L.; Reutelingsperger, C. P. M. Cell. Mol. Life Sci. 2007, 64, 2859-2862.
-
(2007)
Cell. Mol. Life Sci
, vol.64
, pp. 2859-2862
-
-
Kenis, H.1
Hofstra, L.2
Reutelingsperger, C.P.M.3
-
11
-
-
14644430393
-
-
Ran, S.; He, J.; Huang, X.; Soares, M.; Scothorn, D.; Thorpe, P. E. Clin. Cancer Res. 2005, 11, 1551-1562.
-
(2005)
Clin. Cancer Res
, vol.11
, pp. 1551-1562
-
-
Ran, S.1
He, J.2
Huang, X.3
Soares, M.4
Scothorn, D.5
Thorpe, P.E.6
-
12
-
-
33644876123
-
-
(a) Boersma, H. H.; Kietselar, B. L. J. H.; Stolk, L. M. L.; Bennaghmouch, A.; Hofstra, L.; Narula, J.; Heidendal, G. A. K.; Reutelingsperger, C. P. M. J. Nucl. Med. 2005, 46, 2035-2050.
-
(2005)
J. Nucl. Med
, vol.46
, pp. 2035-2050
-
-
Boersma, H.H.1
Kietselar, B.L.J.H.2
Stolk, L.M.L.3
Bennaghmouch, A.4
Hofstra, L.5
Narula, J.6
Heidendal, G.A.K.7
Reutelingsperger, C.P.M.8
-
14
-
-
57349140230
-
-
(a) Soares, M. M.; King, S. W.; Thorpe, P. E. Nat. Med. 2008, 14, 1357-1362.
-
(2008)
Nat. Med
, vol.14
, pp. 1357-1362
-
-
Soares, M.M.1
King, S.W.2
Thorpe, P.E.3
-
15
-
-
20144374032
-
-
(b) Huang, X.; Bennett, M.; Thorpe, P. E. Cancer Res. 2005, 65, 4408-4416.
-
(2005)
Cancer Res
, vol.65
, pp. 4408-4416
-
-
Huang, X.1
Bennett, M.2
Thorpe, P.E.3
-
17
-
-
53849092388
-
-
(b) Hanshaw, R. G.; Stahelin, R. V.; Smith, B. D. Chem.-Eur. J. 2008, 14, 1690-1697.
-
(2008)
Chem.-Eur. J
, vol.14
, pp. 1690-1697
-
-
Hanshaw, R.G.1
Stahelin, R.V.2
Smith, B.D.3
-
18
-
-
58049202245
-
-
For recent reviews of molecular recognition using Zn-DPA complexes, see: a
-
For recent reviews of molecular recognition using Zn-DPA complexes, see: (a) Sakamoto, T.; Ojida, A.; Hamachi, I. Chem. Commun. 2009, 141-152.
-
(2009)
Chem. Commun
, pp. 141-152
-
-
Sakamoto, T.1
Ojida, A.2
Hamachi, I.3
-
19
-
-
66149149550
-
-
(b) Kim, S. K.; Lee, D. H.; Hong, J.-I.; Yoon, J. Acc. Chem. Res. 2009, 42, 23-31.
-
(2009)
Acc. Chem. Res
, vol.42
, pp. 23-31
-
-
Kim, S.K.1
Lee, D.H.2
Hong, J.-I.3
Yoon, J.4
-
23
-
-
33645397600
-
-
(a) Hanshaw, R. G.; Lakshmi, C.; Lambert, T. N.; Johnson, J. R.; Smith, B. D. ChemBioChem 2005, 12, 2214-2220.
-
(2005)
ChemBioChem
, vol.12
, pp. 2214-2220
-
-
Hanshaw, R.G.1
Lakshmi, C.2
Lambert, T.N.3
Johnson, J.R.4
Smith, B.D.5
-
24
-
-
33646722689
-
-
(b) DiVittorio, K. M.; Johnson, J. R.; Johansson, E.; Reynolds, A. J.; Jolliffe, K. A.; Smith, B. D. Org. Biomol. Chem. 2006, 4, 1966-1976.
-
(2006)
Org. Biomol. Chem
, vol.4
, pp. 1966-1976
-
-
DiVittorio, K.M.1
Johnson, J.R.2
Johansson, E.3
Reynolds, A.J.4
Jolliffe, K.A.5
Smith, B.D.6
-
25
-
-
0346147032
-
-
(c) Koulov, A. V.; Stucker, K.; Lakshmi, C.; Robinson, J. P.; Smith, B. D. Cell Death Differ. 2003, 10, 1357-1359.
-
(2003)
Cell Death Differ
, vol.10
, pp. 1357-1359
-
-
Koulov, A.V.1
Stucker, K.2
Lakshmi, C.3
Robinson, J.P.4
Smith, B.D.5
-
26
-
-
23344435579
-
-
(d) Koulov, A. V.; Hanshaw, R. G.; Stucker, K. A.; Lakshmi, C.; Smith, B. D. Isr. J. Chem. 2005, 45, 373-379.
-
(2005)
Isr. J. Chem
, vol.45
, pp. 373-379
-
-
Koulov, A.V.1
Hanshaw, R.G.2
Stucker, K.A.3
Lakshmi, C.4
Smith, B.D.5
-
27
-
-
33645419086
-
-
(e) Quinti, L.; Weissleder, R.; Tung, C. H. Nano Lett. 2006, 6, 488-490.
-
(2006)
Nano Lett
, vol.6
, pp. 488-490
-
-
Quinti, L.1
Weissleder, R.2
Tung, C.H.3
-
28
-
-
33645469125
-
-
Leevy, W. M.; Johnson, J. R.; Lakshmi, C.; Morris, J.; Marquez, M.; Smith, B. D. Chem Commun. 2006, 1595-1597.
-
(2006)
Chem Commun
, pp. 1595-1597
-
-
Leevy, W.M.1
Johnson, J.R.2
Lakshmi, C.3
Morris, J.4
Marquez, M.5
Smith, B.D.6
-
29
-
-
33845943492
-
-
(a) Leevy, W. M.; Gammon, S. T.; Jiang, H.; Johnson, J. R.; Maxwell, D. J.; Marquez, M.; Piwnica-Worms, D.; Smith, B. D. J. Am. Chem. Soc. 2006, 128, 16476-16477.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 16476-16477
-
-
Leevy, W.M.1
Gammon, S.T.2
Jiang, H.3
Johnson, J.R.4
Maxwell, D.J.5
Marquez, M.6
Piwnica-Worms, D.7
Smith, B.D.8
-
30
-
-
41149136613
-
-
(b) Leevy, W. M.; Gammon, S. T.; Johnson, J. R.; Lampkins, A. J.; Jiang, H.; Marquez, M.; Piwnica-Worms, D.; Suckow, M. A.; Smith, B. D. Bioconjugate Chem. 2008, 19, 686-692.
-
(2008)
Bioconjugate Chem
, vol.19
, pp. 686-692
-
-
Leevy, W.M.1
Gammon, S.T.2
Johnson, J.R.3
Lampkins, A.J.4
Jiang, H.5
Marquez, M.6
Piwnica-Worms, D.7
Suckow, M.A.8
Smith, B.D.9
-
32
-
-
74849095123
-
-
Control 3 is the near-IR fluorophore, Indocyanine Green (ICG), which is approved for use in humans. It associates strongly with plasma proteins and is rapidly cleared by the liver. ICG and non-targeted ICG-conjugates typically exhibit modest tumor targeting ability (T/NT < 2) due to enhanced permeation-retention (EPR) effects. See, for example: (a) Becker, A.; Riefke, B.; Ebert, B.; Sukowski, U.; Rinneberg, H.; Semmler, W.; Licha, K. Photochem. Photobiol. 2000, 72, 234-241.
-
Control 3 is the near-IR fluorophore, Indocyanine Green (ICG), which is approved for use in humans. It associates strongly with plasma proteins and is rapidly cleared by the liver. ICG and non-targeted ICG-conjugates typically exhibit modest tumor targeting ability (T/NT < 2) due to enhanced permeation-retention (EPR) effects. See, for example: (a) Becker, A.; Riefke, B.; Ebert, B.; Sukowski, U.; Rinneberg, H.; Semmler, W.; Licha, K. Photochem. Photobiol. 2000, 72, 234-241.
-
-
-
-
33
-
-
0034286904
-
-
(b) Licha, K.; Riefke, B.; Ntziachristos, V.; Beckerm, A.; Chance, B.; Semmler, W. Photochem. Photobiol. 2000, 72, 392-398.
-
(2000)
Photochem. Photobiol
, vol.72
, pp. 392-398
-
-
Licha, K.1
Riefke, B.2
Ntziachristos, V.3
Beckerm, A.4
Chance, B.5
Semmler, W.6
-
34
-
-
21844463799
-
-
(c) Perliz, C.; Licha, K.; Scholle, F.-D.; Ebert, B.; Bahner, M.; Hauff, P.; Moesta, K. T.; Schirner, M. J. Fluoresc. 2005, 15, 443-454
-
(2005)
J. Fluoresc
, vol.15
, pp. 443-454
-
-
Perliz, C.1
Licha, K.2
Scholle, F.-D.3
Ebert, B.4
Bahner, M.5
Hauff, P.6
Moesta, K.T.7
Schirner, M.8
-
35
-
-
67649411817
-
-
For a recent serendipitous discovery of high ICG localization in human hepatocellular carcinoma, see: d
-
For a recent serendipitous discovery of high ICG localization in human hepatocellular carcinoma, see: (d) Gotoh, K.; Yamada, T.; Ishikawa, O.; Takahashi, H.; Eguchi, H.; Yano, M.; Ohigashi, H.; Tomita, Y.; Miyamoto, Y.; Imaoka, S. J. Surg. Oncol. 2009, 100, 75-79.
-
(2009)
J. Surg. Oncol
, vol.100
, pp. 75-79
-
-
Gotoh, K.1
Yamada, T.2
Ishikawa, O.3
Takahashi, H.4
Eguchi, H.5
Yano, M.6
Ohigashi, H.7
Tomita, Y.8
Miyamoto, Y.9
Imaoka, S.10
-
37
-
-
43949134198
-
-
Bonnitcha, P. D.; Vavere, A. L.; Lewis, J. S.; Dilworth, J. R. J. Med. Chem. 2008, 51, 2985-2991.
-
(2008)
J. Med. Chem
, vol.51
, pp. 2985-2991
-
-
Bonnitcha, P.D.1
Vavere, A.L.2
Lewis, J.S.3
Dilworth, J.R.4
-
38
-
-
34250708569
-
-
Kaijzel, E. L.; van der Pluijm, G.; Lowik, C. W. G. M. Clin. Cancer Res. 2007, 13, 3490-3497.
-
(2007)
Clin. Cancer Res
, vol.13
, pp. 3490-3497
-
-
Kaijzel, E.L.1
van der Pluijm, G.2
Lowik, C.W.G.M.3
-
39
-
-
38849154533
-
-
Direct comparison of ex vivo mean pixel intensities for probe 1 and control fluorophore 2 is possible because they have essentially identical brightness and the same fraction of light absorption/scattering by the excised tissue. The average ex vivo tumor intensity from rat dosed with probe 1 is 16-fold higher than rat dosed with control fluorophore 3 (ICG, see ref 20, however, this is only a qualitative measure of relative tumor selectivity because the brightness of 3 in tumor tissue is somewhat uncertain. As expected, the ex vivo imaging with probe 1 shows higher tumor selectivity than the in vivo imaging (T/NT) because the fluorescence signal from the implanted tumor is attenuated by the surrounding skin and tissue, 25) At this point, we cannot rule out that a fraction of probe 1 is targeting the anionic epithelial cell surfaces that line the tumor vasculature. For further discussion of this possibility, see ref 10. Another topic for
-
Direct comparison of ex vivo mean pixel intensities for probe 1 and control fluorophore 2 is possible because they have essentially identical brightness and the same fraction of light absorption/scattering by the excised tissue. The average ex vivo tumor intensity from rat dosed with probe 1 is 16-fold higher than rat dosed with control fluorophore 3 (ICG, see ref 20); however, this is only a qualitative measure of relative tumor selectivity because the brightness of 3 in tumor tissue is somewhat uncertain. As expected, the ex vivo imaging with probe 1 shows higher tumor selectivity than the in vivo imaging (T/NT) because the fluorescence signal from the implanted tumor is attenuated by the surrounding skin and tissue. (25) At this point, we cannot rule out that a fraction of probe 1 is targeting the anionic epithelial cell surfaces that line the tumor vasculature. For further discussion of this possibility, see ref 10. Another topic for further study is whether probe 1 maintains its zinc(II) ions at the in vivo binding site. For evidence that this is the case in vitro, see: DiVittorio, K. M.; Leevy, W. M.; O'Neil, E. J.; Johnson, J. R.; Vakulenko, S.; Morris, J. D.; Rosek, K. D.; Serazin, N.; Hilkert, S.; Hurley, S.; Marquez, M.; Smith, B. D. ChemBioChem 2008, 9, 286-293.
-
-
-
-
40
-
-
36849010988
-
-
(a) Loose, D.; Vermeersch, H.; De Vos, F.; Deron, P.; Slegers, G.; De Wiele, C. V. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 47-52.
-
(2008)
Eur. J. Nucl. Med. Mol. Imaging
, vol.35
, pp. 47-52
-
-
Loose, D.1
Vermeersch, H.2
De Vos, F.3
Deron, P.4
Slegers, G.5
De Wiele, C.V.6
-
41
-
-
20444389062
-
-
(b) Konstantinidou, A. E.; Korkolopoulou, P.; Patsoursis, E. J. Neuro-Oncol. 2005, 72, 151-156.
-
(2005)
J. Neuro-Oncol
, vol.72
, pp. 151-156
-
-
Konstantinidou, A.E.1
Korkolopoulou, P.2
Patsoursis, E.3
|