-
1
-
-
4544290789
-
-
Bleeker-Rovers, C. P.; Boerman, O. C.; Rennen, H. J. J.; Corstens, F. H. M.; Oyen, W. J. G. Curr. Pharm. Des. 2004, 10, 2935-2950.
-
(2004)
Curr. Pharm. Des
, vol.10
, pp. 2935-2950
-
-
Bleeker-Rovers, C.P.1
Boerman, O.C.2
Rennen, H.J.J.3
Corstens, F.H.M.4
Oyen, W.J.G.5
-
2
-
-
20044382684
-
-
(a) Sato, A.; Klaunberg, A.; Tolwani, R. Comp. Med. 2004, 54, 631-634.
-
(2004)
Comp. Med
, vol.54
, pp. 631-634
-
-
Sato, A.1
Klaunberg, A.2
Tolwani, R.3
-
3
-
-
1642295791
-
-
(b) Doyle, T. C.; Burns, S. M.; Contag, C. H. Cell. Microbiol. 2004, 6, 303-317.
-
(2004)
Cell. Microbiol
, vol.6
, pp. 303-317
-
-
Doyle, T.C.1
Burns, S.M.2
Contag, C.H.3
-
6
-
-
0036802915
-
-
(c) Sevick-Muraca, E. M.; Houston, J. P.; Gurfinkel, M. Curr. Opin. Chem. Biol. 2002, 6, 642-650.
-
(2002)
Curr. Opin. Chem. Biol
, vol.6
, pp. 642-650
-
-
Sevick-Muraca, E.M.1
Houston, J.P.2
Gurfinkel, M.3
-
8
-
-
6344291059
-
-
Zhao, X.; Hilliard, L. R.; Mechery, S. J.; Wang, Y.; Bagwe, R. P.; Jin, S.; Tan, W. Proc. Nat. Acad. Sci. U.S.A. 2004, 101, 15027-15032.
-
(2004)
Proc. Nat. Acad. Sci. U.S.A
, vol.101
, pp. 15027-15032
-
-
Zhao, X.1
Hilliard, L.R.2
Mechery, S.J.3
Wang, Y.4
Bagwe, R.P.5
Jin, S.6
Tan, W.7
-
9
-
-
20544443775
-
-
Qu, L. W.; Luo, P. G.; Taylor, S.; Lin, Y.; Huang, W. J; Anyadike, N.; Tzeng, T. R. J.; Stutzenberger, F.; Latour, R. A.; Sun, Y. P. J. Nanosci. Nanotechnol. 2005, 5, 319-322.
-
(2005)
Nanosci. Nanotechnol
, vol.5
, pp. 319-322
-
-
Qu, L.W.1
Luo, P.G.2
Taylor, S.3
Lin, Y.4
Huang, W.J.5
Anyadike, N.6
Tzeng, T.R.J.7
Stutzenberger, F.8
Latour, R.A.9
Sun, Y.P.J.10
-
10
-
-
33645381251
-
-
Dhayal, B.; Henne, W. A.; Doorneweerd, D. D.; Reifenberger, R. G.; Low, P. S. J. Am. Chem. Soc. 2006, 128, 3716-3721.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 3716-3721
-
-
Dhayal, B.1
Henne, W.A.2
Doorneweerd, D.D.3
Reifenberger, R.G.4
Low, P.S.5
-
11
-
-
0344643045
-
-
Lupetti, A. L.; Wellng, M. M.; Pauwels, E. K. J.; Nibbering, P. H. Lancet 2003, 3, 223-229.
-
(2003)
Lancet
, vol.3
, pp. 223-229
-
-
Lupetti, A.L.1
Wellng, M.M.2
Pauwels, E.K.J.3
Nibbering, P.H.4
-
12
-
-
19944433282
-
-
Bettegowda, C.; Foss, C. A.; Cheong, I.; Wang, Y.; Diaz, L.; Agrawal, N.; Fox, J.; Dick, J.; Dang, L. H.; Zhou, S.; Kinzler, K. W.; Vogelstein, B.; Pomper, M. G. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 1145-1150.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A
, vol.102
, pp. 1145-1150
-
-
Bettegowda, C.1
Foss, C.A.2
Cheong, I.3
Wang, Y.4
Diaz, L.5
Agrawal, N.6
Fox, J.7
Dick, J.8
Dang, L.H.9
Zhou, S.10
Kinzler, K.W.11
Vogelstein, B.12
Pomper, M.G.13
-
13
-
-
0036846994
-
-
Britton, K. E.; Wareham, D. W.; Das, S. S.; Solanki, K. K.; Amaral, H.; Bhatnagar, A.; Katamihardja, A. H. S.; Malamitsi, J.; Moustafa, H. M.; Soroa, V. E.; Sundram, F. X.; Padhy, A. K. J. Clin. Path. 2002, 55, 817-823.
-
(2002)
J. Clin. Path
, vol.55
, pp. 817-823
-
-
Britton, K.E.1
Wareham, D.W.2
Das, S.S.3
Solanki, K.K.4
Amaral, H.5
Bhatnagar, A.6
Katamihardja, A.H.S.7
Malamitsi, J.8
Moustafa, H.M.9
Soroa, V.E.10
Sundram, F.X.11
Padhy, A.K.12
-
14
-
-
33645469125
-
-
Leevy, W. M.; Johnson, J. R.; Lakshmi, C.; Morris, J.; Marquez, M.; Smith, B. D. Chem. Commun. 2006, 1595-1597.
-
(2006)
Chem. Commun
, pp. 1595-1597
-
-
Leevy, W.M.1
Johnson, J.R.2
Lakshmi, C.3
Morris, J.4
Marquez, M.5
Smith, B.D.6
-
15
-
-
33645397600
-
-
Hanshaw, R. G.; Lakshmi, C.; Lambert, T. N.; Johnson, J. R.; Smith, B. D. ChemBioChem 2005, 12, 2214-2220.
-
(2005)
ChemBioChem
, vol.12
, pp. 2214-2220
-
-
Hanshaw, R.G.1
Lakshmi, C.2
Lambert, T.N.3
Johnson, J.R.4
Smith, B.D.5
-
17
-
-
0041629667
-
-
and references therein
-
(a) Zaheer, A.; Wheat, T. E.; Frangioni, J. V. Mol. Imaging 2002, 1, 354-364 and references therein.
-
(2002)
Mol. Imaging
, vol.1
, pp. 354-364
-
-
Zaheer, A.1
Wheat, T.E.2
Frangioni, J.V.3
-
19
-
-
33845957868
-
-
The in vivo imaging data reported in this paper was acquired with the Cy7 filter set recommended by the manufacturer. Efforts to optimize the filter set for probe 1 are ongoing
-
The in vivo imaging data reported in this paper was acquired with the Cy7 filter set recommended by the manufacturer. Efforts to optimize the filter set for probe 1 are ongoing.
-
-
-
-
20
-
-
33845954199
-
-
In vitro measurements of minimum inhibitory concentration (MIC) showed no inhibition of S. aureus growth by probe 1 or fluorophore 2 at the maximum tested concentrations of 100 and 400 μM, respectively. Furthermore, fluorescence microscopy of S. aureus cells grown to confluence in the presence of probe 1 showed no time-dependent change in probe staining intensity or staining location (bacterial cell periphery).
-
In vitro measurements of minimum inhibitory concentration (MIC) showed no inhibition of S. aureus growth by probe 1 or fluorophore 2 at the maximum tested concentrations of 100 and 400 μM, respectively. Furthermore, fluorescence microscopy of S. aureus cells grown to confluence in the presence of probe 1 showed no time-dependent change in probe staining intensity or staining location (bacterial cell periphery).
-
-
-
-
21
-
-
33845938536
-
-
The uncertainty is the standard error of the mean from region of interest analysis of the infected and uninfected thigh. At 21 h, each mouse was sacrificed and dissected to confirm selective accumulation in the infected thigh muscle. The complete tissue distribution profile is provided in the supporting information
-
The uncertainty is the standard error of the mean from region of interest analysis of the infected and uninfected thigh. At 21 h, each mouse was sacrificed and dissected to confirm selective accumulation in the infected thigh muscle. The complete tissue distribution profile is provided in the supporting information.
-
-
-
-
22
-
-
33845935783
-
-
The Zn-DPA affinity group has a strong affinity for anionic membrane surfaces that are rich in amphiphilic phosphates see, O Neil, E. J, Smith, B. D. Coord. Chem. Rev. 2006, 250, 3068-3080
-
The Zn-DPA affinity group has a strong affinity for anionic membrane surfaces that are rich in amphiphilic phosphates (see, O Neil, E. J.; Smith, B. D. Coord. Chem. Rev. 2006, 250, 3068-3080).
-
-
-
-
23
-
-
0037993832
-
-
On average, the surfaces of healthy animal cells are zwitterionic, whereas, the surfaces of apoptotic animal cells are anionic because of the translocation of phosphatidylserine from the inner to the outer leaflet of the cell-plasma membrane. The four most likely anionic targets in the bacterial cell wall are lipid A, the phosphorylated membrane anchor component of lipopolysaccharide that resides in the outer monolayer of the outer membrane of Gram-negative bacteria; lipoteichoic acid, an amphiphilic glycerophosphate polymer that extends from the surface of Gram-positive bacteria; and two anionic phospholipids, phosphatidylglycerol and cardiolipin which constitute a large fraction of the total pool of membrane phospholipids. A related question is whether the Zn2+ cations in probe 1 exchange with other transition metal cations that are physiologically present and available. This is a difficult question to address unambiguously, but it is known that E. coli are e
-
+ cations in probe 1 exchange with other transition metal cations that are physiologically present and available. This is a difficult question to address unambiguously, but it is known that E. coli are enriched in several transition metals including Zn, Fe, Cu, and Mn, although they are primarily sequestered in binding sites of various affinities. Finney, L. A.; O Halloran, T. V. Science 2003, 300, 931-936.
-
-
-
|