메뉴 건너뛰기




Volumn 46, Issue 15, 2008, Pages 4061-4081

Prediction and optimisation models for turning operations

Author keywords

Machining economics problem; Neural networks; Response surface methodology

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; ARTIFICIAL INTELLIGENCE; COST FUNCTIONS; DATA MINING; DECISION SUPPORT SYSTEMS; FRICTION; INFORMATION MANAGEMENT; KNOWLEDGE MANAGEMENT; METAL ANALYSIS; NEURAL NETWORKS; SEARCH ENGINES; STEEL ANALYSIS; SURFACE PROPERTIES; SURFACE ROUGHNESS; TOOLS;

EID: 46149118019     PISSN: 00207543     EISSN: 1366588X     Source Type: Journal    
DOI: 10.1080/00207540601113265     Document Type: Article
Times cited : (17)

References (27)
  • 1
    • 0035889172 scopus 로고    scopus 로고
    • Mathematical model for determining machining parameters in multipass turning operations with constraints
    • Al-Ahmari, A.M.A., Mathematical model for determining machining parameters in multipass turning operations with constraints. Int. J. Prod. Res., 2001, 39, 3367-3376.
    • (2001) Int. J. Prod. Res , vol.39 , pp. 3367-3376
    • Al-Ahmari, A.M.A.1
  • 2
    • 0033742932 scopus 로고    scopus 로고
    • Selection of cutting tools and conditions of machining operations using an expert system
    • Arezoo, B., Ridgway, K. and Al-Ahmari, A., Selection of cutting tools and conditions of machining operations using an expert system. Comput. Indus., 2000, 42, 43-58.
    • (2000) Comput. Indus , vol.42 , pp. 43-58
    • Arezoo, B.1    Ridgway, K.2    Al-Ahmari, A.3
  • 3
    • 0034668375 scopus 로고    scopus 로고
    • Optimisation of machining conditions for multi-tool milling operations
    • Cakir, M. and Gurarda, A., Optimisation of machining conditions for multi-tool milling operations. Int. J. Prod. Res., 2000, 38, 3537-3552.
    • (2000) Int. J. Prod. Res , vol.38 , pp. 3537-3552
    • Cakir, M.1    Gurarda, A.2
  • 4
    • 0035803614 scopus 로고    scopus 로고
    • The predictive model for machinability of 304 stainless steel
    • Chien, W. and Chou, C., The predictive model for machinability of 304 stainless steel. J. Mater. Proc. Tech., 2001, 118, 441-447.
    • (2001) J. Mater. Proc. Tech , vol.118 , pp. 441-447
    • Chien, W.1    Chou, C.2
  • 5
    • 0032205695 scopus 로고    scopus 로고
    • Static neural network process models: Considerations and case studies
    • Coit, D., Jackson, B. and Smith, A., Static neural network process models: considerations and case studies. Int. J. Prod. Res., 1998, 36, 2953-2967.
    • (1998) Int. J. Prod. Res , vol.36 , pp. 2953-2967
    • Coit, D.1    Jackson, B.2    Smith, A.3
  • 6
    • 0343168164 scopus 로고    scopus 로고
    • Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology
    • Coudhury, I. and El-Baradie, M., Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology. J. Mater. Proc. Tech., 1999, 95, 30-39.
    • (1999) J. Mater. Proc. Tech , vol.95 , pp. 30-39
    • Coudhury, I.1    El-Baradie, M.2
  • 8
    • 0019634309 scopus 로고
    • Optimisation of multipass turning with constraints. Trans
    • Ermer, D. and Kromodihardjo, S., Optimisation of multipass turning with constraints. Trans. ASME J. Eng. Indust., 1981, 10, 462-468.
    • (1981) ASME J. Eng. Indust , vol.10 , pp. 462-468
    • Ermer, D.1    Kromodihardjo, S.2
  • 9
    • 0036611175 scopus 로고    scopus 로고
    • Digitising uncertainty modeling for reverse engineering applications: Regression vs. neural networks
    • Feng, C. and Wang, X., Digitising uncertainty modeling for reverse engineering applications: regression vs. neural networks. J. Intel. Manuf., 2002, 13, 189-199.
    • (2002) J. Intel. Manuf , vol.13 , pp. 189-199
    • Feng, C.1    Wang, X.2
  • 10
    • 0026221229 scopus 로고
    • Machine parameter selection for turning with constraints: An analytical approach based on geometric programming
    • Gopalakrishan, B. and Al-Khayyal, F., Machine parameter selection for turning with constraints: an analytical approach based on geometric programming. Int. J. Prod. Res., 1991, 29, 1897-1908.
    • (1991) Int. J. Prod. Res , vol.29 , pp. 1897-1908
    • Gopalakrishan, B.1    Al-Khayyal, F.2
  • 11
    • 0011771603 scopus 로고
    • Determination of optimal subdivisions of depth of cut in multipass turning with constraints
    • Gupta, R., Batra, J. and Lal, G., Determination of optimal subdivisions of depth of cut in multipass turning with constraints. Int. J. Prod. Res., 1995, 33, 2555-2565.
    • (1995) Int. J. Prod. Res , vol.33 , pp. 2555-2565
    • Gupta, R.1    Batra, J.2    Lal, G.3
  • 13
    • 0017984145 scopus 로고
    • Optimisation of multipass machining operations
    • Lambert, B. and Walvekar, A., Optimisation of multipass machining operations. Int. J. Prod. Res., 1978, 16, 259-265.
    • (1978) Int. J. Prod. Res , vol.16 , pp. 259-265
    • Lambert, B.1    Walvekar, A.2
  • 14
    • 0033101579 scopus 로고    scopus 로고
    • An economic machining process model using fuzzy nonlinear programming and neural network
    • Lee, H., Yang, B. and Moon, K., An economic machining process model using fuzzy nonlinear programming and neural network. Int. J. Prod. Res., 1999, 37, 835-847.
    • (1999) Int. J. Prod. Res , vol.37 , pp. 835-847
    • Lee, H.1    Yang, B.2    Moon, K.3
  • 15
    • 46149098846 scopus 로고    scopus 로고
    • Minitab Inc, Minitab Inc, USA
    • Minitab Inc., Meet MINITAB Release 14, 2003 (Minitab Inc.: USA).
    • (2003) Meet MINITAB Release , vol.14
  • 17
    • 12444249998 scopus 로고    scopus 로고
    • Predictive modelling of surface roughness and tool wear in hard turning using regression and neural networks
    • Ozel, T. and Karpat, Y., Predictive modelling of surface roughness and tool wear in hard turning using regression and neural networks. Int. J. Mach. Tool Manuf., 2005, 45, 467-479.
    • (2005) Int. J. Mach. Tool Manuf , vol.45 , pp. 467-479
    • Ozel, T.1    Karpat, Y.2
  • 18
    • 0035149285 scopus 로고    scopus 로고
    • Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel
    • Ozler, L. and Ozel, A., Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel. Int. J. Mach. Tool Manuf., 2001, 41, 163-172.
    • (2001) Int. J. Mach. Tool Manuf , vol.41 , pp. 163-172
    • Ozler, L.1    Ozel, A.2
  • 19
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • edited by D. Rumelhart and J. McClelland, MIT Press: Cambridge, MA
    • Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representation by error propagation. In Parallel Data Processing, edited by D. Rumelhart and J. McClelland, 1986 (MIT Press: Cambridge, MA).
    • (1986) Parallel Data Processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 20
    • 0001418851 scopus 로고
    • Optimisation of machining conditions with practical constraints
    • Shin, Y. and Joo, Y., Optimisation of machining conditions with practical constraints. Int. J. Prod. Res, 1992, 30, 2907-2919.
    • (1992) Int. J. Prod. Res , vol.30 , pp. 2907-2919
    • Shin, Y.1    Joo, Y.2
  • 21
    • 1642335673 scopus 로고    scopus 로고
    • A study of tool life in hot machining using artificial neural networks and regression analysis method
    • Tosum, N. and Ozler, L., A study of tool life in hot machining using artificial neural networks and regression analysis method. J. Mater. Proc. Tech., 2002, 124, 99-104.
    • (2002) J. Mater. Proc. Tech , vol.124 , pp. 99-104
    • Tosum, N.1    Ozler, L.2
  • 22
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Werbos, P.J., Backpropagation through time: what it does and how to do it. Proc. IEEE, 1990, 78, 1550-1560.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 23
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
    • Widrow, B. and Lehr, M.A., 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc. IEEE, 1990, 78, 1415-1444.
    • (1990) Proc. IEEE , vol.78 , pp. 1415-1444
    • Widrow, B.1    Lehr, M.A.2
  • 24
    • 0037804668 scopus 로고    scopus 로고
    • Machinability data representation with artificial neural network
    • Wong, S. and Hamouda, A., Machinability data representation with artificial neural network. J. Mater. Proc. Tech., 2003, 138, 538-544.
    • (2003) J. Mater. Proc. Tech , vol.138 , pp. 538-544
    • Wong, S.1    Hamouda, A.2
  • 25
    • 0024731498 scopus 로고
    • The optimal subdivision of cut in multipass machining operations
    • Yellowey, I. and Gunn, E., The optimal subdivision of cut in multipass machining operations. Int. J. Prod. Res., 1989, 27, 1573-1579.
    • (1989) Int. J. Prod. Res , vol.27 , pp. 1573-1579
    • Yellowey, I.1    Gunn, E.2
  • 26
    • 33748019076 scopus 로고
    • A multipass optimisation strategy for CNC lathe operations
    • Yeo, S.H., A multipass optimisation strategy for CNC lathe operations. Int. J. Prod. Econ., 1995, 40, 209-218.
    • (1995) Int. J. Prod. Econ , vol.40 , pp. 209-218
    • Yeo, S.H.1
  • 27
    • 10444235721 scopus 로고    scopus 로고
    • A hybrid analytical-neural network approach to the determination of optimal cutting conditions
    • Zuperl, U., Cus, F., Mursec, B. and Ploj, T., A hybrid analytical-neural network approach to the determination of optimal cutting conditions. J. Mater. Proc. Tech., 2004, 175, 82-90.
    • (2004) J. Mater. Proc. Tech , vol.175 , pp. 82-90
    • Zuperl, U.1    Cus, F.2    Mursec, B.3    Ploj, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.